From 5d5b3cc21f503212da8077afa0598d1664b06426 Mon Sep 17 00:00:00 2001 From: Ben Noordhuis Date: Wed, 8 Nov 2023 21:07:16 +0100 Subject: [PATCH] Remove BigDecimal (#29) Part of https://github.com/quickjs-ng/quickjs/issues/17 --- Makefile | 2 +- doc/jsbignum.texi | 589 -------------------- doc/quickjs.texi | 33 +- examples/pi_bigdecimal.js | 68 --- qjs.c | 4 - qjsc.c | 2 - quickjs-atom.h | 1 - quickjs.c | 1091 ++----------------------------------- quickjs.h | 10 +- tests/test_bignum.js | 85 --- tests/test_bjson.js | 6 - 11 files changed, 56 insertions(+), 1835 deletions(-) delete mode 100644 doc/jsbignum.texi delete mode 100644 examples/pi_bigdecimal.js diff --git a/Makefile b/Makefile index 19d3435..4ec5aa5 100644 --- a/Makefile +++ b/Makefile @@ -54,7 +54,7 @@ prefix=/usr/local #CONFIG_MSAN=y # use UB sanitizer #CONFIG_UBSAN=y -# include the code for BigInt/BigFloat/BigDecimal and math mode +# include the code for BigInt/BigFloat CONFIG_BIGNUM=y OBJDIR=.obj diff --git a/doc/jsbignum.texi b/doc/jsbignum.texi deleted file mode 100644 index 079d920..0000000 --- a/doc/jsbignum.texi +++ /dev/null @@ -1,589 +0,0 @@ -\input texinfo - -@iftex -@afourpaper -@headings double -@end iftex - -@titlepage -@afourpaper -@sp 7 -@center @titlefont{Javascript Bignum Extensions} -@sp 3 -@center Version 2020-01-11 -@sp 3 -@center Author: Fabrice Bellard -@end titlepage - -@setfilename jsbignum.info -@settitle Javascript Bignum Extensions - -@contents - -@chapter Introduction - -The Bignum extensions add the following features to the Javascript -language while being 100% backward compatible: - -@itemize - -@item Operator overloading with a dispatch logic inspired from the proposal available at @url{https://github.com/tc39/proposal-operator-overloading/}. - -@item Arbitrarily large floating point numbers (@code{BigFloat}) in base 2 using the IEEE 754 semantics. - -@item Arbitrarily large floating point numbers (@code{BigDecimal}) in base 10 based on the proposal available at -@url{https://github.com/littledan/proposal-bigdecimal}. - -@item @code{math} mode: arbitrarily large integers and floating point numbers are available by default. The integer division and power can be overloaded for example to return a fraction. The modulo operator (@code{%}) is defined as the Euclidian -remainder. @code{^} is an alias to the power operator -(@code{**}). @code{^^} is used as the exclusive or operator. - -@end itemize - -The extensions are independent from each other except the @code{math} -mode which relies on BigFloat and operator overloading. - -@chapter Operator overloading - -Operator overloading is inspired from the proposal available at -@url{https://github.com/tc39/proposal-operator-overloading/}. It -implements the same dispatch logic but finds the operator sets by -looking at the @code{Symbol.operatorSet} property in the objects. The -changes were done in order to simplify the implementation. - -More precisely, the following modifications were made: - -@itemize - -@item @code{with operators from} is not supported. Operator overloading is always enabled. - -@item The dispatch is not based on a static @code{[[OperatorSet]]} field in all instances. Instead, a dynamic lookup of the @code{Symbol.operatorSet} property is done. This property is typically added in the prototype of each object. - -@item @code{Operators.create(...dictionaries)} is used to create a new OperatorSet object. The @code{Operators} function is supported as an helper to be closer to the TC39 proposal. - -@item @code{[]} cannot be overloaded. - -@item In math mode, the BigInt division and power operators can be overloaded with @code{Operators.updateBigIntOperators(dictionary)}. - -@end itemize - -@chapter BigInt extensions - -A few properties are added to the BigInt object: - -@table @code - -@item tdiv(a, b) -Return @math{trunc(a/b)}. @code{b = 0} raises a RangeError -exception. - -@item fdiv(a, b) -Return @math{\lfloor a/b \rfloor}. @code{b = 0} raises a RangeError -exception. - -@item cdiv(a, b) -Return @math{\lceil a/b \rceil}. @code{b = 0} raises a RangeError -exception. - -@item ediv(a, b) -Return @math{sgn(b) \lfloor a/{|b|} \rfloor} (Euclidian -division). @code{b = 0} raises a RangeError exception. - -@item tdivrem(a, b) -@item fdivrem(a, b) -@item cdivrem(a, b) -@item edivrem(a, b) -Return an array of two elements. The first element is the quotient, -the second is the remainder. The same rounding is done as the -corresponding division operation. - -@item sqrt(a) -Return @math{\lfloor \sqrt(a) \rfloor}. A RangeError exception is -raised if @math{a < 0}. - -@item sqrtrem(a) -Return an array of two elements. The first element is @math{\lfloor -\sqrt{a} \rfloor}. The second element is @math{a-\lfloor \sqrt{a} -\rfloor^2}. A RangeError exception is raised if @math{a < 0}. - -@item floorLog2(a) -Return -1 if @math{a \leq 0} otherwise return @math{\lfloor \log2(a) \rfloor}. - -@item ctz(a) -Return the number of trailing zeros in the two's complement binary representation of a. Return -1 if @math{a=0}. - -@end table - -@chapter BigFloat - -@section Introduction - -This extension adds the @code{BigFloat} primitive type. The -@code{BigFloat} type represents floating point numbers in base 2 -with the IEEE 754 semantics. A floating -point number is represented as a sign, mantissa and exponent. The -special values @code{NaN}, @code{+/-Infinity}, @code{+0} and @code{-0} -are supported. The mantissa and exponent can have any bit length with -an implementation specific minimum and maximum. - -@section Floating point rounding - -Each floating point operation operates with infinite precision and -then rounds the result according to the specified floating point -environment (@code{BigFloatEnv} object). The status flags of the -environment are also set according to the result of the operation. - -If no floating point environment is provided, the global floating -point environment is used. - -The rounding mode of the global floating point environment is always -@code{RNDN} (``round to nearest with ties to even'')@footnote{The -rationale is that the rounding mode changes must always be -explicit.}. The status flags of the global environment cannot be -read@footnote{The rationale is to avoid side effects for the built-in -operators.}. The precision of the global environment is -@code{BigFloatEnv.prec}. The number of exponent bits of the global -environment is @code{BigFloatEnv.expBits}. The global environment -subnormal flag is set to @code{true}. - -For example, @code{prec = 53} and @code{ expBits = 11} exactly give -the same precision as the IEEE 754 64 bit floating point format. The -default precision is @code{prec = 113} and @code{ expBits = 15} (IEEE -754 128 bit floating point format). - -The global floating point environment can only be modified temporarily -when calling a function (see @code{BigFloatEnv.setPrec}). Hence a -function can change the global floating point environment for its -callees but not for its caller. - -@section Operators - -The builtin operators are extended so that a BigFloat is returned if -at least one operand is a BigFloat. The computations are always done -with infinite precision and rounded according to the global floating -point environment. - -@code{typeof} applied on a @code{BigFloat} returns @code{bigfloat}. - -BigFloat can be compared with all the other numeric types and the -result follows the expected mathematical relations. - -However, since BigFloat and Number are different types they are never -equal when using the strict comparison operators (e.g. @code{0.0 === -0.0l} is false). - -@section BigFloat literals - -BigFloat literals are floating point numbers with a trailing @code{l} -suffix. BigFloat literals have an infinite precision. They are rounded -according to the global floating point environment when they are -evaluated.@footnote{Base 10 floating point literals cannot usually be -exactly represented as base 2 floating point number. In order to -ensure that the literal is represented accurately with the current -precision, it must be evaluated at runtime.} - -@section Builtin Object changes - -@subsection @code{BigFloat} function - -The @code{BigFloat} function cannot be invoked as a constructor. When -invoked as a function: the parameter is converted to a primitive -type. If the result is a numeric type, it is converted to BigFloat -without rounding. If the result is a string, it is converted to -BigFloat using the precision of the global floating point environment. - -@code{BigFloat} properties: - -@table @code - -@item LN2 -@item PI -Getter. Return the value of the corresponding mathematical constant -rounded to nearest, ties to even with the current global -precision. The constant values are cached for small precisions. - -@item MIN_VALUE -@item MAX_VALUE -@item EPSILON -Getter. Return the minimum, maximum and epsilon @code{BigFloat} values -(same definition as the corresponding @code{Number} constants). - -@item fpRound(a[, e]) -Round the floating point number @code{a} according to the floating -point environment @code{e} or the global environment if @code{e} is -undefined. - -@item parseFloat(a[, radix[, e]]) -Parse the string @code{a} as a floating point number in radix -@code{radix}. The radix is 0 (default) or from 2 to 36. The radix 0 -means radix 10 unless there is a hexadecimal or binary prefix. The -result is rounded according to the floating point environment @code{e} -or the global environment if @code{e} is undefined. - -@item isFinite(a) -Return true if @code{a} is a finite bigfloat. - -@item isNaN(a) -Return true if @code{a} is a NaN bigfloat. - -@item add(a, b[, e]) -@item sub(a, b[, e]) -@item mul(a, b[, e]) -@item div(a, b[, e]) -Perform the specified floating point operation and round the floating -point number @code{a} according to the floating point environment -@code{e} or the global environment if @code{e} is undefined. If -@code{e} is specified, the floating point status flags are updated. - -@item floor(x) -@item ceil(x) -@item round(x) -@item trunc(x) -Round to an integer. No additional rounding is performed. - -@item abs(x) -Return the absolute value of x. No additional rounding is performed. - -@item fmod(x, y[, e]) -@item remainder(x, y[, e]) -Floating point remainder. The quotient is truncated to zero (fmod) or -to the nearest integer with ties to even (remainder). @code{e} is an -optional floating point environment. - -@item sqrt(x[, e]) -Square root. Return a rounded floating point number. @code{e} is an -optional floating point environment. - -@item sin(x[, e]) -@item cos(x[, e]) -@item tan(x[, e]) -@item asin(x[, e]) -@item acos(x[, e]) -@item atan(x[, e]) -@item atan2(x, y[, e]) -@item exp(x[, e]) -@item log(x[, e]) -@item pow(x, y[, e]) -Transcendental operations. Return a rounded floating point -number. @code{e} is an optional floating point environment. - -@end table - -@subsection @code{BigFloat.prototype} - -The following properties are modified: - -@table @code -@item valueOf() -Return the bigfloat primitive value corresponding to @code{this}. - -@item toString(radix) - -For floating point numbers: - -@itemize -@item -If the radix is a power of two, the conversion is done with infinite -precision. -@item -Otherwise, the number is rounded to nearest with ties to even using -the global precision. It is then converted to string using the minimum -number of digits so that its conversion back to a floating point using -the global precision and round to nearest gives the same number. - -@end itemize - -The exponent letter is @code{e} for base 10, @code{p} for bases 2, 8, -16 with a binary exponent and @code{@@} for the other bases. - -@item toPrecision(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10) -@item toFixed(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10) -@item toExponential(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10) -Same semantics as the corresponding @code{Number} functions with -BigFloats. There is no limit on the accepted precision @code{p}. The -rounding mode and radix can be optionally specified. The radix must be -between 2 and 36. - -@end table - -@subsection @code{BigFloatEnv} constructor - -The @code{BigFloatEnv([p, [,rndMode]]} constructor cannot be invoked as a -function. The floating point environment contains: - -@itemize -@item the mantissa precision in bits - -@item the exponent size in bits assuming an IEEE 754 representation; - -@item the subnormal flag (if true, subnormal floating point numbers can -be generated by the floating point operations). - -@item the rounding mode - -@item the floating point status. The status flags can only be set by the floating point operations. They can be reset with @code{BigFloatEnv.prototype.clearStatus()} or with the various status flag setters. - -@end itemize - -@code{new BigFloatEnv([p, [,rndMode]]} creates a new floating point -environment. The status flags are reset. If no parameter is given the -precision, exponent bits and subnormal flags are copied from the -global floating point environment. Otherwise, the precision is set to -@code{p}, the number of exponent bits is set to @code{expBitsMax} and the -subnormal flags is set to @code{false}. If @code{rndMode} is -@code{undefined}, the rounding mode is set to @code{RNDN}. - -@code{BigFloatEnv} properties: - -@table @code - -@item prec -Getter. Return the precision in bits of the global floating point -environment. The initial value is @code{113}. - -@item expBits -Getter. Return the exponent size in bits of the global floating point -environment assuming an IEEE 754 representation. The initial value is -@code{15}. - -@item setPrec(f, p[, e]) -Set the precision of the global floating point environment to @code{p} -and the exponent size to @code{e} then call the function -@code{f}. Then the Float precision and exponent size are reset to -their precious value and the return value of @code{f} is returned (or -an exception is raised if @code{f} raised an exception). If @code{e} -is @code{undefined} it is set to @code{BigFloatEnv.expBitsMax}. - -@item precMin -Read-only integer. Return the minimum allowed precision. Must be at least 2. - -@item precMax -Read-only integer. Return the maximum allowed precision. Must be at least 113. - -@item expBitsMin -Read-only integer. Return the minimum allowed exponent size in -bits. Must be at least 3. - -@item expBitsMax -Read-only integer. Return the maximum allowed exponent size in -bits. Must be at least 15. - -@item RNDN -Read-only integer. Round to nearest, with ties to even rounding mode. - -@item RNDZ -Read-only integer. Round to zero rounding mode. - -@item RNDD -Read-only integer. Round to -Infinity rounding mode. - -@item RNDU -Read-only integer. Round to +Infinity rounding mode. - -@item RNDNA -Read-only integer. Round to nearest, with ties away from zero rounding mode. - -@item RNDA -Read-only integer. Round away from zero rounding mode. - -@item RNDF@footnote{Could be removed in case a deterministic behavior for floating point operations is required.} -Read-only integer. Faithful rounding mode. The result is -non-deterministically rounded to -Infinity or +Infinity. This rounding -mode usually gives a faster and deterministic running time for the -floating point operations. - -@end table - -@code{BigFloatEnv.prototype} properties: - -@table @code - -@item prec -Getter and setter (Integer). Return or set the precision in bits. - -@item expBits -Getter and setter (Integer). Return or set the exponent size in bits -assuming an IEEE 754 representation. - -@item rndMode -Getter and setter (Integer). Return or set the rounding mode. - -@item subnormal -Getter and setter (Boolean). subnormal flag. It is false when -@code{expBits = expBitsMax}. - -@item clearStatus() -Clear the status flags. - -@item invalidOperation -@item divideByZero -@item overflow -@item underflow -@item inexact -Getter and setter (Boolean). Status flags. - -@end table - -@chapter BigDecimal - -This extension adds the @code{BigDecimal} primitive type. The -@code{BigDecimal} type represents floating point numbers in base -10. It is inspired from the proposal available at -@url{https://github.com/littledan/proposal-bigdecimal}. - -The @code{BigDecimal} floating point numbers are always normalized and -finite. There is no concept of @code{-0}, @code{Infinity} or -@code{NaN}. By default, all the computations are done with infinite -precision. - -@section Operators - -The following builtin operators support BigDecimal: - -@table @code - -@item + -@item - -@item * -Both operands must be BigDecimal. The result is computed with infinite -precision. -@item % -Both operands must be BigDecimal. The result is computed with infinite -precision. A range error is throws in case of division by zero. - -@item / -Both operands must be BigDecimal. A range error is throws in case of -division by zero or if the result cannot be represented with infinite -precision (use @code{BigDecimal.div} to specify the rounding). - -@item ** -Both operands must be BigDecimal. The exponent must be a positive -integer. The result is computed with infinite precision. - -@item === -When one of the operand is a BigDecimal, return true if both operands -are a BigDecimal and if they are equal. - -@item == -@item != -@item <= -@item >= -@item < -@item > - -Numerical comparison. When one of the operand is not a BigDecimal, it is -converted to BigDecimal by using ToString(). Hence comparisons between -Number and BigDecimal do not use the exact mathematical value of the -Number value. - -@end table - -@section BigDecimal literals - -BigDecimal literals are decimal floating point numbers with a trailing -@code{m} suffix. - -@section Builtin Object changes - -@subsection The @code{BigDecimal} function. - -It returns @code{0m} if no parameter is provided. Otherwise the first -parameter is converted to a bigdecimal by using ToString(). Hence -Number values are not converted to their exact numerical value as -BigDecimal. - -@subsection Properties of the @code{BigDecimal} object - -@table @code - -@item add(a, b[, e]) -@item sub(a, b[, e]) -@item mul(a, b[, e]) -@item div(a, b[, e]) -@item mod(a, b[, e]) -@item sqrt(a, e) -@item round(a, e) -Perform the specified floating point operation and round the floating -point result according to the rounding object @code{e}. If the -rounding object is not present, the operation is executed with -infinite precision. - -For @code{div}, a @code{RangeError} exception is thrown in case of -division by zero or if the result cannot be represented with infinite -precision if no rounding object is present. - -For @code{sqrt}, a range error is thrown if @code{a} is less than -zero. - -The rounding object must contain the following properties: -@code{roundingMode} is a string specifying the rounding mode -(@code{"floor"}, @code{"ceiling"}, @code{"down"}, @code{"up"}, -@code{"half-even"}, @code{"half-up"}). Either -@code{maximumSignificantDigits} or @code{maximumFractionDigits} must -be present to specify respectively the number of significant digits -(must be >= 1) or the number of digits after the decimal point (must -be >= 0). - -@end table - -@subsection Properties of the @code{BigDecimal.prototype} object - -@table @code -@item valueOf() -Return the bigdecimal primitive value corresponding to @code{this}. - -@item toString() -Convert @code{this} to a string with infinite precision in base 10. - -@item toPrecision(p, rnd_mode = "half-up") -@item toFixed(p, rnd_mode = "half-up") -@item toExponential(p, rnd_mode = "half-up") -Convert the BigDecimal @code{this} to string with the specified -precision @code{p}. There is no limit on the accepted precision -@code{p}. The rounding mode can be optionally -specified. @code{toPrecision} outputs either in decimal fixed notation -or in decimal exponential notation with a @code{p} digits of -precision. @code{toExponential} outputs in decimal exponential -notation with @code{p} digits after the decimal point. @code{toFixed} -outputs in decimal notation with @code{p} digits after the decimal -point. - -@end table - -@chapter Math mode - -A new @emph{math mode} is enabled with the @code{"use math"} -directive. It propagates the same way as the @emph{strict mode}. It is -designed so that arbitrarily large integers and floating point numbers -are available by default. In order to minimize the number of changes -in the Javascript semantics, integers are represented either as Number -or BigInt depending on their magnitude. Floating point numbers are -always represented as BigFloat. - -The following changes are made to the Javascript semantics: - -@itemize - -@item Floating point literals (i.e. number with a decimal point or an exponent) are @code{BigFloat} by default (i.e. a @code{l} suffix is implied). Hence @code{typeof 1.0 === "bigfloat"}. - -@item Integer literals (i.e. numbers without a decimal point or an exponent) with or without the @code{n} suffix are @code{BigInt} if their value cannot be represented as a safe integer. A safe integer is defined as a integer whose absolute value is smaller or equal to @code{2**53-1}. Hence @code{typeof 1 === "number "}, @code{typeof 1n === "number"} but @code{typeof 9007199254740992 === "bigint" }. - -@item All the bigint builtin operators and functions are modified so that their result is returned as a Number if it is a safe integer. Otherwise the result stays a BigInt. - -@item The builtin operators are modified so that they return an exact result (which can be a BigInt) if their operands are safe integers. Operands between Number and BigInt are accepted provided the Number operand is a safe integer. The integer power with a negative exponent returns a BigFloat as result. The integer division returns a BigFloat as result. - -@item The @code{^} operator is an alias to the power operator (@code{**}). - -@item The power operator (both @code{^} and @code{**}) grammar is modified so that @code{-2^2} is allowed and yields @code{-4}. - -@item The logical xor operator is still available with the @code{^^} operator. - -@item The modulo operator (@code{%}) returns the Euclidian remainder (always positive) instead of the truncated remainder. - -@item The integer division operator can be overloaded with @code{Operators.updateBigIntOperators(dictionary)}. - -@item The integer power operator with a non zero negative exponent can be overloaded with @code{Operators.updateBigIntOperators(dictionary)}. - -@end itemize - -@bye diff --git a/doc/quickjs.texi b/doc/quickjs.texi index 304e12f..7e6e85c 100644 --- a/doc/quickjs.texi +++ b/doc/quickjs.texi @@ -24,10 +24,6 @@ ES2020 specification @footnote{@url{https://tc39.es/ecma262/}} including modules, asynchronous generators, proxies and BigInt. -It supports mathematical extensions such as big decimal float float -numbers (BigDecimal), big binary floating point numbers (BigFloat), -and operator overloading. - @section Main Features @itemize @@ -47,8 +43,6 @@ features from the upcoming ES2021 specification @item Garbage collection using reference counting (to reduce memory usage and have deterministic behavior) with cycle removal. -@item Mathematical extensions: BigDecimal, BigFloat, operator overloading, bigint mode, math mode. - @item Command line interpreter with contextual colorization and completion implemented in Javascript. @item Small built-in standard library with C library wrappers. @@ -118,10 +112,6 @@ source is @code{import}. @item --script Load as ES6 script (default=autodetect). -@item --bignum -Enable the bignum extensions: BigDecimal object, BigFloat object and -the @code{"use math"} directive. - @item -I file @item --include file Include an additional file. @@ -188,10 +178,6 @@ when the @code{-fno-x} options are used. @item -fno-[eval|string-normalize|regexp|json|proxy|map|typedarray|promise|bigint] Disable selected language features to produce a smaller executable file. -@item -fbignum -Enable the bignum extensions: BigDecimal object, BigFloat object and -the @code{"use math"} directive. - @end table @section @code{qjscalc} application @@ -290,21 +276,6 @@ ECMA402 (Internationalization API) is not supported. @end itemize -@subsection Mathematical extensions - -The mathematical extensions are fully backward compatible with -standard Javascript. See @code{jsbignum.pdf} for more information. - -@itemize - -@item @code{BigDecimal} support: arbitrary large floating point numbers in base 10. - -@item @code{BigFloat} support: arbitrary large floating point numbers in base 2. - -@item Operator overloading. - -@end itemize - @section Modules ES6 modules are fully supported. The default name resolution is the @@ -1074,9 +1045,9 @@ binary properties. The full Unicode library weights about 45 KiB (x86 code). -@section BigInt, BigFloat, BigDecimal +@section BigInt -BigInt, BigFloat and BigDecimal are implemented with the @code{libbf} +BigInt is implemented with the @code{libbf} library@footnote{@url{https://bellard.org/libbf}}. It weights about 90 KiB (x86 code) and provides arbitrary precision IEEE 754 floating point operations and transcendental functions with exact rounding. diff --git a/examples/pi_bigdecimal.js b/examples/pi_bigdecimal.js deleted file mode 100644 index 6a416b7..0000000 --- a/examples/pi_bigdecimal.js +++ /dev/null @@ -1,68 +0,0 @@ -/* - * PI computation in Javascript using the QuickJS bigdecimal type - * (decimal floating point) - */ -"use strict"; - -/* compute PI with a precision of 'prec' digits */ -function calc_pi(prec) { - const CHUD_A = 13591409m; - const CHUD_B = 545140134m; - const CHUD_C = 640320m; - const CHUD_C3 = 10939058860032000m; /* C^3/24 */ - const CHUD_DIGITS_PER_TERM = 14.18164746272548; /* log10(C/12)*3 */ - - /* return [P, Q, G] */ - function chud_bs(a, b, need_G) { - var c, P, Q, G, P1, Q1, G1, P2, Q2, G2, b1; - if (a == (b - 1n)) { - b1 = BigDecimal(b); - G = (2m * b1 - 1m) * (6m * b1 - 1m) * (6m * b1 - 5m); - P = G * (CHUD_B * b1 + CHUD_A); - if (b & 1n) - P = -P; - G = G; - Q = b1 * b1 * b1 * CHUD_C3; - } else { - c = (a + b) >> 1n; - [P1, Q1, G1] = chud_bs(a, c, true); - [P2, Q2, G2] = chud_bs(c, b, need_G); - P = P1 * Q2 + P2 * G1; - Q = Q1 * Q2; - if (need_G) - G = G1 * G2; - else - G = 0m; - } - return [P, Q, G]; - } - - var n, P, Q, G; - /* number of serie terms */ - n = BigInt(Math.ceil(prec / CHUD_DIGITS_PER_TERM)) + 10n; - [P, Q, G] = chud_bs(0n, n, false); - Q = BigDecimal.div(Q, (P + Q * CHUD_A), - { roundingMode: "half-even", - maximumSignificantDigits: prec }); - G = (CHUD_C / 12m) * BigDecimal.sqrt(CHUD_C, - { roundingMode: "half-even", - maximumSignificantDigits: prec }); - return Q * G; -} - -(function() { - var r, n_digits, n_bits; - if (typeof scriptArgs != "undefined") { - if (scriptArgs.length < 2) { - print("usage: pi n_digits"); - return; - } - n_digits = scriptArgs[1] | 0; - } else { - n_digits = 1000; - } - /* we add more digits to reduce the probability of bad rounding for - the last digits */ - r = calc_pi(n_digits + 20); - print(r.toFixed(n_digits, "down")); -})(); diff --git a/qjs.c b/qjs.c index d395261..f606b1a 100644 --- a/qjs.c +++ b/qjs.c @@ -110,7 +110,6 @@ static JSContext *JS_NewCustomContext(JSRuntime *rt) #ifdef CONFIG_BIGNUM if (bignum_ext) { JS_AddIntrinsicBigFloat(ctx); - JS_AddIntrinsicBigDecimal(ctx); JS_AddIntrinsicOperators(ctx); JS_EnableBignumExt(ctx, TRUE); } @@ -289,9 +288,6 @@ void help(void) " --script load as ES6 script (default=autodetect)\n" "-I --include file include an additional file\n" " --std make 'std' and 'os' available to the loaded script\n" -#ifdef CONFIG_BIGNUM - " --bignum enable the bignum extensions (BigFloat, BigDecimal)\n" -#endif "-T --trace trace memory allocation\n" "-d --dump dump the memory usage stats\n" " --memory-limit n limit the memory usage to 'n' bytes\n" diff --git a/qjsc.c b/qjsc.c index b9f1e4c..19bea02 100644 --- a/qjsc.c +++ b/qjsc.c @@ -634,7 +634,6 @@ int main(int argc, char **argv) #ifdef CONFIG_BIGNUM if (bignum_ext) { JS_AddIntrinsicBigFloat(ctx); - JS_AddIntrinsicBigDecimal(ctx); JS_AddIntrinsicOperators(ctx); JS_EnableBignumExt(ctx, TRUE); } @@ -691,7 +690,6 @@ int main(int argc, char **argv) if (bignum_ext) { fprintf(fo, " JS_AddIntrinsicBigFloat(ctx);\n" - " JS_AddIntrinsicBigDecimal(ctx);\n" " JS_AddIntrinsicOperators(ctx);\n" " JS_EnableBignumExt(ctx, 1);\n"); } diff --git a/quickjs-atom.h b/quickjs-atom.h index 4c22794..60fd78e 100644 --- a/quickjs-atom.h +++ b/quickjs-atom.h @@ -220,7 +220,6 @@ DEF(DataView, "DataView") DEF(BigInt, "BigInt") DEF(BigFloat, "BigFloat") DEF(BigFloatEnv, "BigFloatEnv") -DEF(BigDecimal, "BigDecimal") DEF(OperatorSet, "OperatorSet") DEF(Operators, "Operators") #endif diff --git a/quickjs.c b/quickjs.c index 07cb57d..c00de09 100644 --- a/quickjs.c +++ b/quickjs.c @@ -149,7 +149,6 @@ enum { JS_CLASS_BIG_INT, /* u.object_data */ JS_CLASS_BIG_FLOAT, /* u.object_data */ JS_CLASS_FLOAT_ENV, /* u.float_env */ - JS_CLASS_BIG_DECIMAL, /* u.object_data */ JS_CLASS_OPERATOR_SET, /* u.operator_set */ #endif JS_CLASS_MAP, /* u.map_state */ @@ -296,7 +295,6 @@ struct JSRuntime { bf_context_t bf_ctx; JSNumericOperations bigint_ops; JSNumericOperations bigfloat_ops; - JSNumericOperations bigdecimal_ops; uint32_t operator_count; #endif void *user_opaque; @@ -385,11 +383,6 @@ typedef struct JSBigFloat { JSRefCountHeader header; /* must come first, 32-bit */ bf_t num; } JSBigFloat; - -typedef struct JSBigDecimal { - JSRefCountHeader header; /* must come first, 32-bit */ - bfdec_t num; -} JSBigDecimal; #endif typedef enum { @@ -1132,12 +1125,6 @@ static inline bf_t *JS_GetBigFloat(JSValueConst val) JSBigFloat *p = JS_VALUE_GET_PTR(val); return &p->num; } -static JSValue JS_NewBigDecimal(JSContext *ctx); -static inline bfdec_t *JS_GetBigDecimal(JSValueConst val) -{ - JSBigDecimal *p = JS_VALUE_GET_PTR(val); - return &p->num; -} static JSValue JS_NewBigInt(JSContext *ctx); static inline bf_t *JS_GetBigInt(JSValueConst val) { @@ -1150,9 +1137,6 @@ static int JS_ToBigInt64Free(JSContext *ctx, int64_t *pres, JSValue val); static bf_t *JS_ToBigInt(JSContext *ctx, bf_t *buf, JSValueConst val); static void JS_FreeBigInt(JSContext *ctx, bf_t *a, bf_t *buf); static bf_t *JS_ToBigFloat(JSContext *ctx, bf_t *buf, JSValueConst val); -static JSValue JS_ToBigDecimalFree(JSContext *ctx, JSValue val, - BOOL allow_null_or_undefined); -static bfdec_t *JS_ToBigDecimal(JSContext *ctx, JSValueConst val); #endif JSValue JS_ThrowOutOfMemory(JSContext *ctx); static JSValue JS_ThrowTypeErrorRevokedProxy(JSContext *ctx); @@ -1486,7 +1470,6 @@ static JSClassShortDef const js_std_class_def[] = { { JS_ATOM_BigInt, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_INT */ { JS_ATOM_BigFloat, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_FLOAT */ { JS_ATOM_BigFloatEnv, js_float_env_finalizer, NULL }, /* JS_CLASS_FLOAT_ENV */ - { JS_ATOM_BigDecimal, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_DECIMAL */ { JS_ATOM_OperatorSet, js_operator_set_finalizer, js_operator_set_mark }, /* JS_CLASS_OPERATOR_SET */ #endif { JS_ATOM_Map, js_map_finalizer, js_map_mark }, /* JS_CLASS_MAP */ @@ -1627,7 +1610,6 @@ JSRuntime *JS_NewRuntime2(const JSMallocFunctions *mf, void *opaque) bf_context_init(&rt->bf_ctx, js_bf_realloc, rt); set_dummy_numeric_ops(&rt->bigint_ops); set_dummy_numeric_ops(&rt->bigfloat_ops); - set_dummy_numeric_ops(&rt->bigdecimal_ops); #endif init_list_head(&rt->context_list); @@ -4804,7 +4786,6 @@ static JSValue JS_NewObjectFromShape(JSContext *ctx, JSShape *sh, JSClassID clas #ifdef CONFIG_BIGNUM case JS_CLASS_BIG_INT: case JS_CLASS_BIG_FLOAT: - case JS_CLASS_BIG_DECIMAL: #endif p->u.object_data = JS_UNDEFINED; goto set_exotic; @@ -4851,31 +4832,6 @@ JSValue JS_NewObjectProtoClass(JSContext *ctx, JSValueConst proto_val, return JS_NewObjectFromShape(ctx, sh, class_id); } -#if 0 -static JSValue JS_GetObjectData(JSContext *ctx, JSValueConst obj) -{ - JSObject *p; - - if (JS_VALUE_GET_TAG(obj) == JS_TAG_OBJECT) { - p = JS_VALUE_GET_OBJ(obj); - switch(p->class_id) { - case JS_CLASS_NUMBER: - case JS_CLASS_STRING: - case JS_CLASS_BOOLEAN: - case JS_CLASS_SYMBOL: - case JS_CLASS_DATE: -#ifdef CONFIG_BIGNUM - case JS_CLASS_BIG_INT: - case JS_CLASS_BIG_FLOAT: - case JS_CLASS_BIG_DECIMAL: -#endif - return JS_DupValue(ctx, p->u.object_data); - } - } - return JS_UNDEFINED; -} -#endif - static int JS_SetObjectData(JSContext *ctx, JSValueConst obj, JSValue val) { JSObject *p; @@ -4891,7 +4847,6 @@ static int JS_SetObjectData(JSContext *ctx, JSValueConst obj, JSValue val) #ifdef CONFIG_BIGNUM case JS_CLASS_BIG_INT: case JS_CLASS_BIG_FLOAT: - case JS_CLASS_BIG_DECIMAL: #endif JS_FreeValue(ctx, p->u.object_data); p->u.object_data = val; @@ -5525,13 +5480,6 @@ void __JS_FreeValueRT(JSRuntime *rt, JSValue v) js_free_rt(rt, bf); } break; - case JS_TAG_BIG_DECIMAL: - { - JSBigDecimal *bf = JS_VALUE_GET_PTR(v); - bfdec_delete(&bf->num); - js_free_rt(rt, bf); - } - break; #endif case JS_TAG_SYMBOL: { @@ -5890,7 +5838,6 @@ static void compute_value_size(JSValueConst val, JSMemoryUsage_helper *hp) #ifdef CONFIG_BIGNUM case JS_TAG_BIG_INT: case JS_TAG_BIG_FLOAT: - case JS_TAG_BIG_DECIMAL: /* should track JSBigFloat usage */ break; #endif @@ -6020,7 +5967,6 @@ void JS_ComputeMemoryUsage(JSRuntime *rt, JSMemoryUsage *s) #ifdef CONFIG_BIGNUM case JS_CLASS_BIG_INT: /* u.object_data */ case JS_CLASS_BIG_FLOAT: /* u.object_data */ - case JS_CLASS_BIG_DECIMAL: /* u.object_data */ #endif compute_value_size(p->u.object_data, hp); break; @@ -6881,9 +6827,6 @@ static JSValueConst JS_GetPrototypePrimitive(JSContext *ctx, JSValueConst val) case JS_TAG_BIG_FLOAT: val = ctx->class_proto[JS_CLASS_BIG_FLOAT]; break; - case JS_TAG_BIG_DECIMAL: - val = ctx->class_proto[JS_CLASS_BIG_DECIMAL]; - break; #endif case JS_TAG_INT: case JS_TAG_FLOAT64: @@ -9944,14 +9887,6 @@ static int JS_ToBoolFree(JSContext *ctx, JSValue val) JS_FreeValue(ctx, val); return ret; } - case JS_TAG_BIG_DECIMAL: - { - JSBigDecimal *p = JS_VALUE_GET_PTR(val); - BOOL ret; - ret = p->num.expn != BF_EXP_ZERO && p->num.expn != BF_EXP_NAN; - JS_FreeValue(ctx, val); - return ret; - } #endif case JS_TAG_OBJECT: { @@ -10075,7 +10010,6 @@ static double js_strtod(const char *p, int radix, BOOL is_float) #define ATOD_TYPE_FLOAT64 (0 << 7) #define ATOD_TYPE_BIG_INT (1 << 7) #define ATOD_TYPE_BIG_FLOAT (2 << 7) -#define ATOD_TYPE_BIG_DECIMAL (3 << 7) /* accept -0x1 */ #define ATOD_ACCEPT_PREFIX_AFTER_SIGN (1 << 10) @@ -10125,26 +10059,6 @@ static JSValue js_string_to_bigfloat(JSContext *ctx, const char *buf, return val; } -static JSValue js_string_to_bigdecimal(JSContext *ctx, const char *buf, - int radix, int flags, slimb_t *pexponent) -{ - bfdec_t *a; - int ret; - JSValue val; - - val = JS_NewBigDecimal(ctx); - if (JS_IsException(val)) - return val; - a = JS_GetBigDecimal(val); - ret = bfdec_atof(a, buf, NULL, BF_PREC_INF, - BF_RNDZ | BF_ATOF_NO_NAN_INF); - if (ret & BF_ST_MEM_ERROR) { - JS_FreeValue(ctx, val); - return JS_ThrowOutOfMemory(ctx); - } - return val; -} - #endif /* return an exception in case of memory error. Return JS_NAN if @@ -10308,9 +10222,6 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp, } else if (*p == 'l') { p++; atod_type = ATOD_TYPE_BIG_FLOAT; - } else if (*p == 'm') { - p++; - atod_type = ATOD_TYPE_BIG_DECIMAL; } else if (is_float && radix != 10) { goto fail; } @@ -10338,11 +10249,6 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp, val = ctx->rt->bigfloat_ops.from_string(ctx, buf, radix, flags, pexponent); break; - case ATOD_TYPE_BIG_DECIMAL: - if (radix != 10) - goto fail; - val = ctx->rt->bigdecimal_ops.from_string(ctx, buf, radix, flags, NULL); - break; default: abort(); } @@ -10394,13 +10300,6 @@ static JSValue JS_ToNumberHintFree(JSContext *ctx, JSValue val, tag = JS_VALUE_GET_NORM_TAG(val); switch(tag) { #ifdef CONFIG_BIGNUM - case JS_TAG_BIG_DECIMAL: - if (flag != TON_FLAG_NUMERIC) { - JS_FreeValue(ctx, val); - return JS_ThrowTypeError(ctx, "cannot convert bigdecimal to number"); - } - ret = val; - break; case JS_TAG_BIG_INT: if (flag != TON_FLAG_NUMERIC) { JS_FreeValue(ctx, val); @@ -11122,12 +11021,6 @@ static BOOL JS_NumberIsNegativeOrMinusZero(JSContext *ctx, JSValueConst val) return p->num.sign; } break; - case JS_TAG_BIG_DECIMAL: - { - JSBigDecimal *p = JS_VALUE_GET_PTR(val); - return p->num.sign; - } - break; #endif default: return FALSE; @@ -11224,33 +11117,6 @@ static JSValue js_bigfloat_to_string(JSContext *ctx, JSValueConst val) return js_ftoa(ctx, val, 10, 0, BF_RNDN | BF_FTOA_FORMAT_FREE_MIN); } -static JSValue js_bigdecimal_to_string1(JSContext *ctx, JSValueConst val, - limb_t prec, int flags) -{ - JSValue ret; - bfdec_t *a; - char *str; - int saved_sign; - - a = JS_ToBigDecimal(ctx, val); - saved_sign = a->sign; - if (a->expn == BF_EXP_ZERO) - a->sign = 0; - str = bfdec_ftoa(NULL, a, prec, flags | BF_FTOA_JS_QUIRKS); - a->sign = saved_sign; - if (!str) - return JS_ThrowOutOfMemory(ctx); - ret = JS_NewString(ctx, str); - bf_free(ctx->bf_ctx, str); - return ret; -} - -static JSValue js_bigdecimal_to_string(JSContext *ctx, JSValueConst val) -{ - return js_bigdecimal_to_string1(ctx, val, 0, - BF_RNDZ | BF_FTOA_FORMAT_FREE); -} - #endif /* CONFIG_BIGNUM */ /* 2 <= base <= 36 */ @@ -11570,8 +11436,6 @@ JSValue JS_ToStringInternal(JSContext *ctx, JSValueConst val, BOOL is_ToProperty return ctx->rt->bigint_ops.to_string(ctx, val); case JS_TAG_BIG_FLOAT: return ctx->rt->bigfloat_ops.to_string(ctx, val); - case JS_TAG_BIG_DECIMAL: - return ctx->rt->bigdecimal_ops.to_string(ctx, val); #endif default: str = "[unsupported type]"; @@ -11879,16 +11743,6 @@ static __maybe_unused void JS_DumpValueShort(JSRuntime *rt, bf_free(&rt->bf_ctx, str); } break; - case JS_TAG_BIG_DECIMAL: - { - JSBigDecimal *p = JS_VALUE_GET_PTR(val); - char *str; - str = bfdec_ftoa(NULL, &p->num, BF_PREC_INF, - BF_RNDZ | BF_FTOA_FORMAT_FREE); - printf("%sm", str); - bf_free(&rt->bf_ctx, str); - } - break; #endif case JS_TAG_STRING: { @@ -12090,27 +11944,6 @@ static bf_t *JS_ToBigFloat(JSContext *ctx, bf_t *buf, JSValueConst val) return r; } -/* return NULL if invalid type */ -static bfdec_t *JS_ToBigDecimal(JSContext *ctx, JSValueConst val) -{ - uint32_t tag; - JSBigDecimal *p; - bfdec_t *r; - - tag = JS_VALUE_GET_NORM_TAG(val); - switch(tag) { - case JS_TAG_BIG_DECIMAL: - p = JS_VALUE_GET_PTR(val); - r = &p->num; - break; - default: - JS_ThrowTypeError(ctx, "bigdecimal expected"); - r = NULL; - break; - } - return r; -} - /* return NaN if bad bigint literal */ static JSValue JS_StringToBigInt(JSContext *ctx, JSValue val) { @@ -12281,17 +12114,6 @@ static JSValue JS_NewBigFloat(JSContext *ctx) return JS_MKPTR(JS_TAG_BIG_FLOAT, p); } -static JSValue JS_NewBigDecimal(JSContext *ctx) -{ - JSBigDecimal *p; - p = js_malloc(ctx, sizeof(*p)); - if (!p) - return JS_EXCEPTION; - p->header.ref_count = 1; - bfdec_init(ctx->bf_ctx, &p->num); - return JS_MKPTR(JS_TAG_BIG_DECIMAL, p); -} - static JSValue JS_NewBigInt(JSContext *ctx) { JSBigFloat *p; @@ -12705,53 +12527,6 @@ static int js_unary_arith_bigfloat(JSContext *ctx, return 0; } -static int js_unary_arith_bigdecimal(JSContext *ctx, - JSValue *pres, OPCodeEnum op, JSValue op1) -{ - bfdec_t *r, *a; - int ret, v; - JSValue res; - - if (op == OP_plus) { - JS_ThrowTypeError(ctx, "bigdecimal argument with unary +"); - JS_FreeValue(ctx, op1); - return -1; - } - - res = JS_NewBigDecimal(ctx); - if (JS_IsException(res)) { - JS_FreeValue(ctx, op1); - return -1; - } - r = JS_GetBigDecimal(res); - a = JS_ToBigDecimal(ctx, op1); - ret = 0; - switch(op) { - case OP_inc: - case OP_dec: - v = 2 * (op - OP_dec) - 1; - ret = bfdec_add_si(r, a, v, BF_PREC_INF, BF_RNDZ); - break; - case OP_plus: - ret = bfdec_set(r, a); - break; - case OP_neg: - ret = bfdec_set(r, a); - bfdec_neg(r); - break; - default: - abort(); - } - JS_FreeValue(ctx, op1); - if (unlikely(ret)) { - JS_FreeValue(ctx, res); - throw_bf_exception(ctx, ret); - return -1; - } - *pres = res; - return 0; -} - static no_inline __exception int js_unary_arith_slow(JSContext *ctx, JSValue *sp, OPCodeEnum op) @@ -12814,10 +12589,6 @@ static no_inline __exception int js_unary_arith_slow(JSContext *ctx, if (ctx->rt->bigfloat_ops.unary_arith(ctx, sp - 1, op, op1)) goto exception; break; - case JS_TAG_BIG_DECIMAL: - if (ctx->rt->bigdecimal_ops.unary_arith(ctx, sp - 1, op, op1)) - goto exception; - break; default: handle_float64: { @@ -13057,89 +12828,6 @@ static int js_binary_arith_bigint(JSContext *ctx, OPCodeEnum op, return -1; } -/* b must be a positive integer */ -static int js_bfdec_pow(bfdec_t *r, const bfdec_t *a, const bfdec_t *b) -{ - bfdec_t b1; - int32_t b2; - int ret; - - bfdec_init(b->ctx, &b1); - ret = bfdec_set(&b1, b); - if (ret) { - bfdec_delete(&b1); - return ret; - } - ret = bfdec_rint(&b1, BF_RNDZ); - if (ret) { - bfdec_delete(&b1); - return BF_ST_INVALID_OP; /* must be an integer */ - } - ret = bfdec_get_int32(&b2, &b1); - bfdec_delete(&b1); - if (ret) - return ret; /* overflow */ - if (b2 < 0) - return BF_ST_INVALID_OP; /* must be positive */ - return bfdec_pow_ui(r, a, b2); -} - -static int js_binary_arith_bigdecimal(JSContext *ctx, OPCodeEnum op, - JSValue *pres, JSValue op1, JSValue op2) -{ - bfdec_t *r, *a, *b; - int ret; - JSValue res; - - res = JS_NewBigDecimal(ctx); - if (JS_IsException(res)) - goto fail; - r = JS_GetBigDecimal(res); - - a = JS_ToBigDecimal(ctx, op1); - if (!a) - goto fail; - b = JS_ToBigDecimal(ctx, op2); - if (!b) - goto fail; - switch(op) { - case OP_add: - ret = bfdec_add(r, a, b, BF_PREC_INF, BF_RNDZ); - break; - case OP_sub: - ret = bfdec_sub(r, a, b, BF_PREC_INF, BF_RNDZ); - break; - case OP_mul: - ret = bfdec_mul(r, a, b, BF_PREC_INF, BF_RNDZ); - break; - case OP_div: - ret = bfdec_div(r, a, b, BF_PREC_INF, BF_RNDZ); - break; - case OP_mod: - ret = bfdec_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_RNDZ); - break; - case OP_pow: - ret = js_bfdec_pow(r, a, b); - break; - default: - abort(); - } - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - if (unlikely(ret)) { - JS_FreeValue(ctx, res); - throw_bf_exception(ctx, ret); - return -1; - } - *pres = res; - return 0; - fail: - JS_FreeValue(ctx, res); - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - return -1; -} - static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *sp, OPCodeEnum op) { @@ -13224,9 +12912,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s abort(); } sp[-2] = JS_NewInt64(ctx, v); - } else if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) { - if (ctx->rt->bigdecimal_ops.binary_arith(ctx, op, sp - 2, op1, op2)) - goto exception; } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) { if (ctx->rt->bigfloat_ops.binary_arith(ctx, op, sp - 2, op1, op2)) goto exception; @@ -13355,9 +13040,6 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp) v2 = JS_VALUE_GET_INT(op2); v = (int64_t)v1 + (int64_t)v2; sp[-2] = JS_NewInt64(ctx, v); - } else if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) { - if (ctx->rt->bigdecimal_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2)) - goto exception; } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) { if (ctx->rt->bigfloat_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2)) goto exception; @@ -13518,52 +13200,6 @@ static int js_compare_bigfloat(JSContext *ctx, OPCodeEnum op, return res; } -static int js_compare_bigdecimal(JSContext *ctx, OPCodeEnum op, - JSValue op1, JSValue op2) -{ - bfdec_t *a, *b; - int res; - - /* Note: binary floats are converted to bigdecimal with - toString(). It is not mathematically correct but is consistent - with the BigDecimal() constructor behavior */ - op1 = JS_ToBigDecimalFree(ctx, op1, TRUE); - if (JS_IsException(op1)) { - JS_FreeValue(ctx, op2); - return -1; - } - op2 = JS_ToBigDecimalFree(ctx, op2, TRUE); - if (JS_IsException(op2)) { - JS_FreeValue(ctx, op1); - return -1; - } - a = JS_ToBigDecimal(ctx, op1); - b = JS_ToBigDecimal(ctx, op2); - - switch(op) { - case OP_lt: - res = bfdec_cmp_lt(a, b); /* if NaN return false */ - break; - case OP_lte: - res = bfdec_cmp_le(a, b); /* if NaN return false */ - break; - case OP_gt: - res = bfdec_cmp_lt(b, a); /* if NaN return false */ - break; - case OP_gte: - res = bfdec_cmp_le(b, a); /* if NaN return false */ - break; - case OP_eq: - res = bfdec_cmp_eq(a, b); /* if NaN return false */ - break; - default: - abort(); - } - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - return res; -} - static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp, OPCodeEnum op) { @@ -13666,11 +13302,7 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp, tag1 = JS_VALUE_GET_NORM_TAG(op1); tag2 = JS_VALUE_GET_NORM_TAG(op2); - if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) { - res = ctx->rt->bigdecimal_ops.compare(ctx, op, op1, op2); - if (res < 0) - goto exception; - } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) { + if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) { res = ctx->rt->bigfloat_ops.compare(ctx, op, op1, op2); if (res < 0) goto exception; @@ -13722,8 +13354,7 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp, static BOOL tag_is_number(uint32_t tag) { return (tag == JS_TAG_INT || tag == JS_TAG_BIG_INT || - tag == JS_TAG_FLOAT64 || tag == JS_TAG_BIG_FLOAT || - tag == JS_TAG_BIG_DECIMAL); + tag == JS_TAG_FLOAT64 || tag == JS_TAG_BIG_FLOAT); } static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp, @@ -13757,10 +13388,6 @@ static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp, d2 = JS_VALUE_GET_INT(op2); } res = (d1 == d2); - } else if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) { - res = ctx->rt->bigdecimal_ops.compare(ctx, OP_eq, op1, op2); - if (res < 0) - goto exception; } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) { res = ctx->rt->bigfloat_ops.compare(ctx, OP_eq, op1, op2); if (res < 0) @@ -14498,21 +14125,6 @@ static BOOL js_strict_eq2(JSContext *ctx, JSValue op1, JSValue op2, } } break; - case JS_TAG_BIG_DECIMAL: - { - JSBigDecimal *p1, *p2; - const bfdec_t *a, *b; - if (tag1 != tag2) { - res = FALSE; - break; - } - p1 = JS_VALUE_GET_PTR(op1); - p2 = JS_VALUE_GET_PTR(op2); - a = &p1->num; - b = &p2->num; - res = bfdec_cmp_eq(a, b); - } - break; #endif default: res = FALSE; @@ -14626,9 +14238,6 @@ static __exception int js_operator_typeof(JSContext *ctx, JSValueConst op1) case JS_TAG_BIG_FLOAT: atom = JS_ATOM_bigfloat; break; - case JS_TAG_BIG_DECIMAL: - atom = JS_ATOM_bigdecimal; - break; #endif case JS_TAG_INT: case JS_TAG_FLOAT64: @@ -33591,7 +33200,6 @@ typedef enum BCTagEnum { BC_TAG_ARRAY, BC_TAG_BIG_INT, BC_TAG_BIG_FLOAT, - BC_TAG_BIG_DECIMAL, BC_TAG_TEMPLATE_OBJECT, BC_TAG_FUNCTION_BYTECODE, BC_TAG_MODULE, @@ -33649,7 +33257,6 @@ static const char * const bc_tag_str[] = { "array", "bigint", "bigfloat", - "bigdecimal", "template", "function", "module", @@ -33895,9 +33502,6 @@ static int JS_WriteBigNum(BCWriterState *s, JSValueConst obj) case JS_TAG_BIG_FLOAT: tag1 = BC_TAG_BIG_FLOAT; break; - case JS_TAG_BIG_DECIMAL: - tag1 = BC_TAG_BIG_DECIMAL; - break; default: abort(); } @@ -33923,91 +33527,40 @@ static int JS_WriteBigNum(BCWriterState *s, JSValueConst obj) /* mantissa */ if (a->len != 0) { - if (tag != JS_TAG_BIG_DECIMAL) { - i = 0; - while (i < a->len && a->tab[i] == 0) - i++; - assert(i < a->len); - v = a->tab[i]; - n1 = sizeof(limb_t); - while ((v & 0xff) == 0) { - n1--; - v >>= 8; - } + i = 0; + while (i < a->len && a->tab[i] == 0) i++; - len = (a->len - i) * sizeof(limb_t) + n1; - if (len > INT32_MAX) { - JS_ThrowInternalError(s->ctx, "bignum is too large"); - return -1; - } - bc_put_leb128(s, len); - /* always saved in byte based little endian representation */ - for(j = 0; j < n1; j++) { - dbuf_putc(&s->dbuf, v >> (j * 8)); - } - for(; i < a->len; i++) { - limb_t v = a->tab[i]; + assert(i < a->len); + v = a->tab[i]; + n1 = sizeof(limb_t); + while ((v & 0xff) == 0) { + n1--; + v >>= 8; + } + i++; + len = (a->len - i) * sizeof(limb_t) + n1; + if (len > INT32_MAX) { + JS_ThrowInternalError(s->ctx, "bignum is too large"); + return -1; + } + bc_put_leb128(s, len); + /* always saved in byte based little endian representation */ + for(j = 0; j < n1; j++) { + dbuf_putc(&s->dbuf, v >> (j * 8)); + } + for(; i < a->len; i++) { + limb_t v = a->tab[i]; #if LIMB_BITS == 32 #ifdef WORDS_BIGENDIAN - v = bswap32(v); + v = bswap32(v); #endif - dbuf_put_u32(&s->dbuf, v); + dbuf_put_u32(&s->dbuf, v); #else #ifdef WORDS_BIGENDIAN - v = bswap64(v); + v = bswap64(v); #endif - dbuf_put_u64(&s->dbuf, v); + dbuf_put_u64(&s->dbuf, v); #endif - } - } else { - int bpos, d; - uint8_t v8; - size_t i0; - - /* little endian BCD */ - i = 0; - while (i < a->len && a->tab[i] == 0) - i++; - assert(i < a->len); - len = a->len * LIMB_DIGITS; - v = a->tab[i]; - j = 0; - while ((v % 10) == 0) { - j++; - v /= 10; - } - len -= j; - assert(len > 0); - if (len > INT32_MAX) { - JS_ThrowInternalError(s->ctx, "bignum is too large"); - return -1; - } - bc_put_leb128(s, len); - - bpos = 0; - v8 = 0; - i0 = i; - for(; i < a->len; i++) { - if (i != i0) { - v = a->tab[i]; - j = 0; - } - for(; j < LIMB_DIGITS; j++) { - d = v % 10; - v /= 10; - if (bpos == 0) { - v8 = d; - bpos = 1; - } else { - dbuf_putc(&s->dbuf, v8 | (d << 4)); - bpos = 0; - } - } - } - /* flush the last digit */ - if (bpos) { - dbuf_putc(&s->dbuf, v8); - } } } return 0; @@ -34372,7 +33925,6 @@ static int JS_WriteObjectRec(BCWriterState *s, JSValueConst obj) #ifdef CONFIG_BIGNUM case JS_CLASS_BIG_INT: case JS_CLASS_BIG_FLOAT: - case JS_CLASS_BIG_DECIMAL: #endif bc_put_u8(s, BC_TAG_OBJECT_VALUE); ret = JS_WriteObjectRec(s, p->u.object_data); @@ -34395,7 +33947,6 @@ static int JS_WriteObjectRec(BCWriterState *s, JSValueConst obj) #ifdef CONFIG_BIGNUM case JS_TAG_BIG_INT: case JS_TAG_BIG_FLOAT: - case JS_TAG_BIG_DECIMAL: if (JS_WriteBigNum(s, obj)) goto fail; break; @@ -34798,12 +34349,11 @@ static JSValue JS_ReadBigNum(BCReaderState *s, int tag) uint8_t v8; int32_t e; uint32_t len; - limb_t l, i, n, j; + limb_t l, i, n; JSBigFloat *p; limb_t v; bf_t *a; - int bpos, d; - + p = js_new_bf(s->ctx); if (!p) goto fail; @@ -34814,9 +34364,6 @@ static JSValue JS_ReadBigNum(BCReaderState *s, int tag) case BC_TAG_BIG_FLOAT: obj = JS_MKPTR(JS_TAG_BIG_FLOAT, p); break; - case BC_TAG_BIG_DECIMAL: - obj = JS_MKPTR(JS_TAG_BIG_DECIMAL, p); - break; default: abort(); } @@ -34850,71 +34397,39 @@ static JSValue JS_ReadBigNum(BCReaderState *s, int tag) JS_ThrowInternalError(s->ctx, "invalid bignum length"); goto fail; } - if (tag != BC_TAG_BIG_DECIMAL) - l = (len + sizeof(limb_t) - 1) / sizeof(limb_t); - else - l = (len + LIMB_DIGITS - 1) / LIMB_DIGITS; + l = (len + sizeof(limb_t) - 1) / sizeof(limb_t); if (bf_resize(a, l)) { JS_ThrowOutOfMemory(s->ctx); goto fail; } - if (tag != BC_TAG_BIG_DECIMAL) { - n = len & (sizeof(limb_t) - 1); - if (n != 0) { - v = 0; - for(i = 0; i < n; i++) { - if (bc_get_u8(s, &v8)) - goto fail; - v |= (limb_t)v8 << ((sizeof(limb_t) - n + i) * 8); - } - a->tab[0] = v; - i = 1; - } else { - i = 0; - } - for(; i < l; i++) { -#if LIMB_BITS == 32 - if (bc_get_u32(s, &v)) + n = len & (sizeof(limb_t) - 1); + if (n != 0) { + v = 0; + for(i = 0; i < n; i++) { + if (bc_get_u8(s, &v8)) goto fail; + v |= (limb_t)v8 << ((sizeof(limb_t) - n + i) * 8); + } + a->tab[0] = v; + i = 1; + } else { + i = 0; + } + for(; i < l; i++) { +#if LIMB_BITS == 32 + if (bc_get_u32(s, &v)) + goto fail; #ifdef WORDS_BIGENDIAN - v = bswap32(v); + v = bswap32(v); #endif #else - if (bc_get_u64(s, &v)) - goto fail; + if (bc_get_u64(s, &v)) + goto fail; #ifdef WORDS_BIGENDIAN - v = bswap64(v); + v = bswap64(v); #endif #endif - a->tab[i] = v; - } - } else { - bpos = 0; - for(i = 0; i < l; i++) { - if (i == 0 && (n = len % LIMB_DIGITS) != 0) { - j = LIMB_DIGITS - n; - } else { - j = 0; - } - v = 0; - for(; j < LIMB_DIGITS; j++) { - if (bpos == 0) { - if (bc_get_u8(s, &v8)) - goto fail; - d = v8 & 0xf; - bpos = 1; - } else { - d = v8 >> 4; - bpos = 0; - } - if (d >= 10) { - JS_ThrowInternalError(s->ctx, "invalid digit"); - goto fail; - } - v += mp_pow_dec[j] * d; - } - a->tab[i] = v; - } + a->tab[i] = v; } } bc_read_trace(s, "}\n"); @@ -35551,7 +35066,6 @@ static JSValue JS_ReadObjectRec(BCReaderState *s) #ifdef CONFIG_BIGNUM case BC_TAG_BIG_INT: case BC_TAG_BIG_FLOAT: - case BC_TAG_BIG_DECIMAL: obj = JS_ReadBigNum(s, tag); break; #endif @@ -35993,9 +35507,6 @@ static JSValue JS_ToObject(JSContext *ctx, JSValueConst val) case JS_TAG_BIG_FLOAT: obj = JS_NewObjectClass(ctx, JS_CLASS_BIG_FLOAT); goto set_value; - case JS_TAG_BIG_DECIMAL: - obj = JS_NewObjectClass(ctx, JS_CLASS_BIG_DECIMAL); - goto set_value; #endif case JS_TAG_INT: case JS_TAG_FLOAT64: @@ -39565,14 +39076,6 @@ static JSValue js_number_constructor(JSContext *ctx, JSValueConst new_target, val = __JS_NewFloat64(ctx, d); } break; - case JS_TAG_BIG_DECIMAL: - val = JS_ToStringFree(ctx, val); - if (JS_IsException(val)) - return val; - val = JS_ToNumberFree(ctx, val); - if (JS_IsException(val)) - return val; - break; #endif default: break; @@ -48967,7 +48470,6 @@ void JS_AddIntrinsicOperators(JSContext *ctx) js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_STRING]); js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_INT]); js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_FLOAT]); - js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_DECIMAL]); } /* BigInt */ @@ -49020,11 +48522,6 @@ static JSValue JS_ToBigIntCtorFree(JSContext *ctx, JSValue val) bf_delete(a); } break; - case JS_TAG_BIG_DECIMAL: - val = JS_ToStringFree(ctx, val); - if (JS_IsException(val)) - break; - goto redo; case JS_TAG_STRING: val = JS_StringToBigIntErr(ctx, val); break; @@ -49574,11 +49071,6 @@ static JSValue js_bigfloat_constructor(JSContext *ctx, val = JS_MKPTR(JS_TAG_BIG_FLOAT, p); } break; - case JS_TAG_BIG_DECIMAL: - val = JS_ToStringFree(ctx, val); - if (JS_IsException(val)) - break; - goto redo; case JS_TAG_STRING: { const char *str, *p; @@ -50220,485 +49712,6 @@ void JS_AddIntrinsicBigFloat(JSContext *ctx) countof(js_float_env_funcs)); } -/* BigDecimal */ - -static JSValue JS_ToBigDecimalFree(JSContext *ctx, JSValue val, - BOOL allow_null_or_undefined) -{ - redo: - switch(JS_VALUE_GET_NORM_TAG(val)) { - case JS_TAG_BIG_DECIMAL: - break; - case JS_TAG_NULL: - if (!allow_null_or_undefined) - goto fail; - /* fall thru */ - case JS_TAG_BOOL: - case JS_TAG_INT: - { - bfdec_t *r; - int32_t v = JS_VALUE_GET_INT(val); - - val = JS_NewBigDecimal(ctx); - if (JS_IsException(val)) - break; - r = JS_GetBigDecimal(val); - if (bfdec_set_si(r, v)) { - JS_FreeValue(ctx, val); - val = JS_EXCEPTION; - break; - } - } - break; - case JS_TAG_FLOAT64: - case JS_TAG_BIG_INT: - case JS_TAG_BIG_FLOAT: - val = JS_ToStringFree(ctx, val); - if (JS_IsException(val)) - break; - goto redo; - case JS_TAG_STRING: - { - const char *str, *p; - size_t len; - int err; - - str = JS_ToCStringLen(ctx, &len, val); - JS_FreeValue(ctx, val); - if (!str) - return JS_EXCEPTION; - p = str; - p += skip_spaces(p); - if ((p - str) == len) { - bfdec_t *r; - val = JS_NewBigDecimal(ctx); - if (JS_IsException(val)) - break; - r = JS_GetBigDecimal(val); - bfdec_set_zero(r, 0); - err = 0; - } else { - val = js_atof(ctx, p, &p, 0, ATOD_TYPE_BIG_DECIMAL); - if (JS_IsException(val)) { - JS_FreeCString(ctx, str); - return JS_EXCEPTION; - } - p += skip_spaces(p); - err = ((p - str) != len); - } - JS_FreeCString(ctx, str); - if (err) { - JS_FreeValue(ctx, val); - return JS_ThrowSyntaxError(ctx, "invalid bigdecimal literal"); - } - } - break; - case JS_TAG_OBJECT: - val = JS_ToPrimitiveFree(ctx, val, HINT_NUMBER); - if (JS_IsException(val)) - break; - goto redo; - case JS_TAG_UNDEFINED: - { - bfdec_t *r; - if (!allow_null_or_undefined) - goto fail; - val = JS_NewBigDecimal(ctx); - if (JS_IsException(val)) - break; - r = JS_GetBigDecimal(val); - bfdec_set_nan(r); - } - break; - default: - fail: - JS_FreeValue(ctx, val); - return JS_ThrowTypeError(ctx, "cannot convert to bigdecimal"); - } - return val; -} - -static JSValue js_bigdecimal_constructor(JSContext *ctx, - JSValueConst new_target, - int argc, JSValueConst *argv) -{ - JSValue val; - if (!JS_IsUndefined(new_target)) - return JS_ThrowTypeError(ctx, "not a constructor"); - if (argc == 0) { - bfdec_t *r; - val = JS_NewBigDecimal(ctx); - if (JS_IsException(val)) - return val; - r = JS_GetBigDecimal(val); - bfdec_set_zero(r, 0); - } else { - val = JS_ToBigDecimalFree(ctx, JS_DupValue(ctx, argv[0]), FALSE); - } - return val; -} - -static JSValue js_thisBigDecimalValue(JSContext *ctx, JSValueConst this_val) -{ - if (JS_IsBigDecimal(this_val)) - return JS_DupValue(ctx, this_val); - - if (JS_VALUE_GET_TAG(this_val) == JS_TAG_OBJECT) { - JSObject *p = JS_VALUE_GET_OBJ(this_val); - if (p->class_id == JS_CLASS_BIG_DECIMAL) { - if (JS_IsBigDecimal(p->u.object_data)) - return JS_DupValue(ctx, p->u.object_data); - } - } - return JS_ThrowTypeError(ctx, "not a bigdecimal"); -} - -static JSValue js_bigdecimal_toString(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv) -{ - JSValue val; - - val = js_thisBigDecimalValue(ctx, this_val); - if (JS_IsException(val)) - return val; - return JS_ToStringFree(ctx, val); -} - -static JSValue js_bigdecimal_valueOf(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv) -{ - return js_thisBigDecimalValue(ctx, this_val); -} - -static int js_bigdecimal_get_rnd_mode(JSContext *ctx, JSValueConst obj) -{ - const char *str; - size_t size; - int rnd_mode; - - str = JS_ToCStringLen(ctx, &size, obj); - if (!str) - return -1; - if (strlen(str) != size) - goto invalid_rounding_mode; - if (!strcmp(str, "floor")) { - rnd_mode = BF_RNDD; - } else if (!strcmp(str, "ceiling")) { - rnd_mode = BF_RNDU; - } else if (!strcmp(str, "down")) { - rnd_mode = BF_RNDZ; - } else if (!strcmp(str, "up")) { - rnd_mode = BF_RNDA; - } else if (!strcmp(str, "half-even")) { - rnd_mode = BF_RNDN; - } else if (!strcmp(str, "half-up")) { - rnd_mode = BF_RNDNA; - } else { - invalid_rounding_mode: - JS_FreeCString(ctx, str); - JS_ThrowTypeError(ctx, "invalid rounding mode"); - return -1; - } - JS_FreeCString(ctx, str); - return rnd_mode; -} - -typedef struct { - int64_t prec; - bf_flags_t flags; -} BigDecimalEnv; - -static int js_bigdecimal_get_env(JSContext *ctx, BigDecimalEnv *fe, - JSValueConst obj) -{ - JSValue prop; - int64_t val; - BOOL has_prec; - int rnd_mode; - - if (!JS_IsObject(obj)) { - JS_ThrowTypeErrorNotAnObject(ctx); - return -1; - } - prop = JS_GetProperty(ctx, obj, JS_ATOM_roundingMode); - if (JS_IsException(prop)) - return -1; - rnd_mode = js_bigdecimal_get_rnd_mode(ctx, prop); - JS_FreeValue(ctx, prop); - if (rnd_mode < 0) - return -1; - fe->flags = rnd_mode; - - prop = JS_GetProperty(ctx, obj, JS_ATOM_maximumSignificantDigits); - if (JS_IsException(prop)) - return -1; - has_prec = FALSE; - if (!JS_IsUndefined(prop)) { - if (JS_ToInt64SatFree(ctx, &val, prop)) - return -1; - if (val < 1 || val > BF_PREC_MAX) - goto invalid_precision; - fe->prec = val; - has_prec = TRUE; - } - - prop = JS_GetProperty(ctx, obj, JS_ATOM_maximumFractionDigits); - if (JS_IsException(prop)) - return -1; - if (!JS_IsUndefined(prop)) { - if (has_prec) { - JS_FreeValue(ctx, prop); - JS_ThrowTypeError(ctx, "cannot provide both maximumSignificantDigits and maximumFractionDigits"); - return -1; - } - if (JS_ToInt64SatFree(ctx, &val, prop)) - return -1; - if (val < 0 || val > BF_PREC_MAX) { - invalid_precision: - JS_ThrowTypeError(ctx, "invalid precision"); - return -1; - } - fe->prec = val; - fe->flags |= BF_FLAG_RADPNT_PREC; - has_prec = TRUE; - } - if (!has_prec) { - JS_ThrowTypeError(ctx, "precision must be present"); - return -1; - } - return 0; -} - - -static JSValue js_bigdecimal_fop(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv, int magic) -{ - bfdec_t *a, *b, r_s, *r = &r_s; - JSValue op1, op2, res; - BigDecimalEnv fe_s, *fe = &fe_s; - int op_count, ret; - - if (magic == MATH_OP_SQRT || - magic == MATH_OP_ROUND) - op_count = 1; - else - op_count = 2; - - op1 = JS_ToNumeric(ctx, argv[0]); - if (JS_IsException(op1)) - return op1; - a = JS_ToBigDecimal(ctx, op1); - if (!a) { - JS_FreeValue(ctx, op1); - return JS_EXCEPTION; - } - if (op_count >= 2) { - op2 = JS_ToNumeric(ctx, argv[1]); - if (JS_IsException(op2)) { - JS_FreeValue(ctx, op1); - return op2; - } - b = JS_ToBigDecimal(ctx, op2); - if (!b) - goto fail; - } else { - op2 = JS_UNDEFINED; - b = NULL; - } - fe->flags = BF_RNDZ; - fe->prec = BF_PREC_INF; - if (op_count < argc) { - if (js_bigdecimal_get_env(ctx, fe, argv[op_count])) - goto fail; - } - - res = JS_NewBigDecimal(ctx); - if (JS_IsException(res)) { - fail: - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - return JS_EXCEPTION; - } - r = JS_GetBigDecimal(res); - switch (magic) { - case MATH_OP_ADD: - ret = bfdec_add(r, a, b, fe->prec, fe->flags); - break; - case MATH_OP_SUB: - ret = bfdec_sub(r, a, b, fe->prec, fe->flags); - break; - case MATH_OP_MUL: - ret = bfdec_mul(r, a, b, fe->prec, fe->flags); - break; - case MATH_OP_DIV: - ret = bfdec_div(r, a, b, fe->prec, fe->flags); - break; - case MATH_OP_FMOD: - ret = bfdec_rem(r, a, b, fe->prec, fe->flags, BF_RNDZ); - break; - case MATH_OP_SQRT: - ret = bfdec_sqrt(r, a, fe->prec, fe->flags); - break; - case MATH_OP_ROUND: - ret = bfdec_set(r, a); - if (!(ret & BF_ST_MEM_ERROR)) - ret = bfdec_round(r, fe->prec, fe->flags); - break; - default: - abort(); - } - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - ret &= BF_ST_MEM_ERROR | BF_ST_DIVIDE_ZERO | BF_ST_INVALID_OP | - BF_ST_OVERFLOW; - if (ret != 0) { - JS_FreeValue(ctx, res); - return throw_bf_exception(ctx, ret); - } else { - return res; - } -} - -static JSValue js_bigdecimal_toFixed(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv) -{ - JSValue val, ret; - int64_t f; - int rnd_mode; - - val = js_thisBigDecimalValue(ctx, this_val); - if (JS_IsException(val)) - return val; - if (JS_ToInt64Sat(ctx, &f, argv[0])) - goto fail; - if (f < 0 || f > BF_PREC_MAX) { - JS_ThrowRangeError(ctx, "invalid number of digits"); - goto fail; - } - rnd_mode = BF_RNDNA; - if (argc > 1) { - rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]); - if (rnd_mode < 0) - goto fail; - } - ret = js_bigdecimal_to_string1(ctx, val, f, rnd_mode | BF_FTOA_FORMAT_FRAC); - JS_FreeValue(ctx, val); - return ret; - fail: - JS_FreeValue(ctx, val); - return JS_EXCEPTION; -} - -static JSValue js_bigdecimal_toExponential(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv) -{ - JSValue val, ret; - int64_t f; - int rnd_mode; - - val = js_thisBigDecimalValue(ctx, this_val); - if (JS_IsException(val)) - return val; - if (JS_ToInt64Sat(ctx, &f, argv[0])) - goto fail; - if (JS_IsUndefined(argv[0])) { - ret = js_bigdecimal_to_string1(ctx, val, 0, - BF_RNDN | BF_FTOA_FORMAT_FREE_MIN | BF_FTOA_FORCE_EXP); - } else { - if (f < 0 || f > BF_PREC_MAX) { - JS_ThrowRangeError(ctx, "invalid number of digits"); - goto fail; - } - rnd_mode = BF_RNDNA; - if (argc > 1) { - rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]); - if (rnd_mode < 0) - goto fail; - } - ret = js_bigdecimal_to_string1(ctx, val, f + 1, - rnd_mode | BF_FTOA_FORMAT_FIXED | BF_FTOA_FORCE_EXP); - } - JS_FreeValue(ctx, val); - return ret; - fail: - JS_FreeValue(ctx, val); - return JS_EXCEPTION; -} - -static JSValue js_bigdecimal_toPrecision(JSContext *ctx, JSValueConst this_val, - int argc, JSValueConst *argv) -{ - JSValue val, ret; - int64_t p; - int rnd_mode; - - val = js_thisBigDecimalValue(ctx, this_val); - if (JS_IsException(val)) - return val; - if (JS_IsUndefined(argv[0])) { - return JS_ToStringFree(ctx, val); - } - if (JS_ToInt64Sat(ctx, &p, argv[0])) - goto fail; - if (p < 1 || p > BF_PREC_MAX) { - JS_ThrowRangeError(ctx, "invalid number of digits"); - goto fail; - } - rnd_mode = BF_RNDNA; - if (argc > 1) { - rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]); - if (rnd_mode < 0) - goto fail; - } - ret = js_bigdecimal_to_string1(ctx, val, p, - rnd_mode | BF_FTOA_FORMAT_FIXED); - JS_FreeValue(ctx, val); - return ret; - fail: - JS_FreeValue(ctx, val); - return JS_EXCEPTION; -} - -static const JSCFunctionListEntry js_bigdecimal_proto_funcs[] = { - JS_CFUNC_DEF("toString", 0, js_bigdecimal_toString ), - JS_CFUNC_DEF("valueOf", 0, js_bigdecimal_valueOf ), - JS_CFUNC_DEF("toPrecision", 1, js_bigdecimal_toPrecision ), - JS_CFUNC_DEF("toFixed", 1, js_bigdecimal_toFixed ), - JS_CFUNC_DEF("toExponential", 1, js_bigdecimal_toExponential ), -}; - -static const JSCFunctionListEntry js_bigdecimal_funcs[] = { - JS_CFUNC_MAGIC_DEF("add", 2, js_bigdecimal_fop, MATH_OP_ADD ), - JS_CFUNC_MAGIC_DEF("sub", 2, js_bigdecimal_fop, MATH_OP_SUB ), - JS_CFUNC_MAGIC_DEF("mul", 2, js_bigdecimal_fop, MATH_OP_MUL ), - JS_CFUNC_MAGIC_DEF("div", 2, js_bigdecimal_fop, MATH_OP_DIV ), - JS_CFUNC_MAGIC_DEF("mod", 2, js_bigdecimal_fop, MATH_OP_FMOD ), - JS_CFUNC_MAGIC_DEF("round", 1, js_bigdecimal_fop, MATH_OP_ROUND ), - JS_CFUNC_MAGIC_DEF("sqrt", 1, js_bigdecimal_fop, MATH_OP_SQRT ), -}; - -void JS_AddIntrinsicBigDecimal(JSContext *ctx) -{ - JSRuntime *rt = ctx->rt; - JSValueConst obj1; - - rt->bigdecimal_ops.to_string = js_bigdecimal_to_string; - rt->bigdecimal_ops.from_string = js_string_to_bigdecimal; - rt->bigdecimal_ops.unary_arith = js_unary_arith_bigdecimal; - rt->bigdecimal_ops.binary_arith = js_binary_arith_bigdecimal; - rt->bigdecimal_ops.compare = js_compare_bigdecimal; - - ctx->class_proto[JS_CLASS_BIG_DECIMAL] = JS_NewObject(ctx); - JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_BIG_DECIMAL], - js_bigdecimal_proto_funcs, - countof(js_bigdecimal_proto_funcs)); - obj1 = JS_NewGlobalCConstructor(ctx, "BigDecimal", - js_bigdecimal_constructor, 1, - ctx->class_proto[JS_CLASS_BIG_DECIMAL]); - JS_SetPropertyFunctionList(ctx, obj1, js_bigdecimal_funcs, - countof(js_bigdecimal_funcs)); -} - void JS_EnableBignumExt(JSContext *ctx, BOOL enable) { ctx->bignum_ext = enable; diff --git a/quickjs.h b/quickjs.h index 0d2af44..13d7a64 100644 --- a/quickjs.h +++ b/quickjs.h @@ -66,8 +66,7 @@ typedef uint32_t JSAtom; enum { /* all tags with a reference count are negative */ - JS_TAG_FIRST = -11, /* first negative tag */ - JS_TAG_BIG_DECIMAL = -11, + JS_TAG_FIRST = -10, /* first negative tag */ JS_TAG_BIG_INT = -10, JS_TAG_BIG_FLOAT = -9, JS_TAG_SYMBOL = -8, @@ -372,7 +371,6 @@ void JS_AddIntrinsicTypedArrays(JSContext *ctx); void JS_AddIntrinsicPromise(JSContext *ctx); void JS_AddIntrinsicBigInt(JSContext *ctx); void JS_AddIntrinsicBigFloat(JSContext *ctx); -void JS_AddIntrinsicBigDecimal(JSContext *ctx); /* enable operator overloading */ void JS_AddIntrinsicOperators(JSContext *ctx); /* enable "use math" */ @@ -561,12 +559,6 @@ static inline JS_BOOL JS_IsBigFloat(JSValueConst v) return tag == JS_TAG_BIG_FLOAT; } -static inline JS_BOOL JS_IsBigDecimal(JSValueConst v) -{ - int tag = JS_VALUE_GET_TAG(v); - return tag == JS_TAG_BIG_DECIMAL; -} - static inline JS_BOOL JS_IsBool(JSValueConst v) { return JS_VALUE_GET_TAG(v) == JS_TAG_BOOL; diff --git a/tests/test_bignum.js b/tests/test_bignum.js index f4f72a0..23d1f6c 100644 --- a/tests/test_bignum.js +++ b/tests/test_bignum.js @@ -235,92 +235,7 @@ function test_bigfloat() assert((0x123.438l).toExponential(4, BigFloatEnv.RNDNA, 16), "1.2344p+8"); } -function test_bigdecimal() -{ - assert(1m === 1m); - assert(1m !== 2m); - test_less(1m, 2m); - test_eq(2m, 2m); - - test_less(1, 2m); - test_eq(2, 2m); - - test_less(1.1, 2m); - test_eq(Math.sqrt(4), 2m); - - test_less(2n, 3m); - test_eq(3n, 3m); - - assert(BigDecimal("1234.1") === 1234.1m); - assert(BigDecimal(" 1234.1") === 1234.1m); - assert(BigDecimal(" 1234.1 ") === 1234.1m); - - assert(BigDecimal(0.1) === 0.1m); - assert(BigDecimal(123) === 123m); - assert(BigDecimal(true) === 1m); - - assert(123m + 1m === 124m); - assert(123m - 1m === 122m); - - assert(3.2m * 3m === 9.6m); - assert(10m / 2m === 5m); - assertThrows(RangeError, () => { 10m / 3m } ); - - assert(10m % 3m === 1m); - assert(-10m % 3m === -1m); - - assert(1234.5m ** 3m === 1881365963.625m); - assertThrows(RangeError, () => { 2m ** 3.1m } ); - assertThrows(RangeError, () => { 2m ** -3m } ); - - assert(BigDecimal.sqrt(2m, - { roundingMode: "half-even", - maximumSignificantDigits: 4 }) === 1.414m); - assert(BigDecimal.sqrt(101m, - { roundingMode: "half-even", - maximumFractionDigits: 3 }) === 10.050m); - assert(BigDecimal.sqrt(0.002m, - { roundingMode: "half-even", - maximumFractionDigits: 3 }) === 0.045m); - - assert(BigDecimal.round(3.14159m, - { roundingMode: "half-even", - maximumFractionDigits: 3 }) === 3.142m); - - assert(BigDecimal.add(3.14159m, 0.31212m, - { roundingMode: "half-even", - maximumFractionDigits: 2 }) === 3.45m); - assert(BigDecimal.sub(3.14159m, 0.31212m, - { roundingMode: "down", - maximumFractionDigits: 2 }) === 2.82m); - assert(BigDecimal.mul(3.14159m, 0.31212m, - { roundingMode: "half-even", - maximumFractionDigits: 3 }) === 0.981m); - assert(BigDecimal.mod(3.14159m, 0.31211m, - { roundingMode: "half-even", - maximumFractionDigits: 4 }) === 0.0205m); - assert(BigDecimal.div(20m, 3m, - { roundingMode: "half-even", - maximumSignificantDigits: 3 }) === 6.67m); - assert(BigDecimal.div(20m, 3m, - { roundingMode: "half-even", - maximumFractionDigits: 50 }) === - 6.66666666666666666666666666666666666666666666666667m); - - /* string conversion */ - assert((1234.125m).toString(), "1234.125"); - assert((1234.125m).toFixed(2), "1234.13"); - assert((1234.125m).toFixed(2, "down"), "1234.12"); - assert((1234.125m).toExponential(), "1.234125e+3"); - assert((1234.125m).toExponential(5), "1.23413e+3"); - assert((1234.125m).toExponential(5, "down"), "1.23412e+3"); - assert((1234.125m).toPrecision(6), "1234.13"); - assert((1234.125m).toPrecision(6, "down"), "1234.12"); - assert((-1234.125m).toPrecision(6, "floor"), "-1234.13"); -} - test_bigint1(); test_bigint2(); test_bigint_ext(); test_bigfloat(); -test_bigdecimal(); diff --git a/tests/test_bjson.js b/tests/test_bjson.js index fcbb8e6..fe3f904 100644 --- a/tests/test_bjson.js +++ b/tests/test_bjson.js @@ -163,12 +163,6 @@ function bjson_test_all() BigFloat.MIN_VALUE]); }, 113, 15); } - if (typeof BigDecimal !== "undefined") { - bjson_test([BigDecimal("0"), - BigDecimal("0.8"), BigDecimal("123321312321321e100"), - BigDecimal("-1233213123213214332333223332e100"), - BigDecimal("1.233e-1000")]); - } bjson_test([new Date(1234), new String("abc"), new Number(-12.1), new Boolean(true)]);