\input texinfo @iftex @afourpaper @headings double @end iftex @titlepage @afourpaper @sp 7 @center @titlefont{QuickJS Javascript Engine} @sp 3 @end titlepage @setfilename spec.info @settitle QuickJS Javascript Engine @contents @chapter Introduction QuickJS is a small and embeddable Javascript engine. It supports the ES2020 specification @footnote{@url{https://tc39.es/ecma262/}} including modules, asynchronous generators, proxies and BigInt. @section Main Features @itemize @item Small and easily embeddable: just a few C files, no external dependency, 210 KiB of x86 code for a simple ``hello world'' program. @item Fast interpreter with very low startup time: runs the 69000 tests of the ECMAScript Test Suite@footnote{@url{https://github.com/tc39/test262}} in about 95 seconds on a single core of a desktop PC. The complete life cycle of a runtime instance completes in less than 300 microseconds. @item Almost complete ES2020 support including modules, asynchronous generators and full Annex B support (legacy web compatibility). Many features from the upcoming ES2021 specification @footnote{@url{https://tc39.github.io/ecma262/}} are also supported. @item Passes nearly 100% of the ECMAScript Test Suite tests when selecting the ES2020 features. @item Compile Javascript sources to executables with no external dependency. @item Garbage collection using reference counting (to reduce memory usage and have deterministic behavior) with cycle removal. @item Command line interpreter with contextual colorization and completion implemented in Javascript. @item Small built-in standard library with C library wrappers. @end itemize @chapter Usage @section Installation A Makefile is provided to compile the engine on Linux or MacOS/X. A preliminary Windows support is available thru cross compilation on a Linux host with the MingGW tools. Edit the top of the @code{Makefile} if you wish to select specific options then run @code{make}. You can type @code{make install} as root if you wish to install the binaries and support files to @code{/usr/local} (this is not necessary to use QuickJS). @section Quick start @code{qjs} is the command line interpreter (Read-Eval-Print Loop). You can pass Javascript files and/or expressions as arguments to execute them: @example ./qjs examples/hello.js @end example @code{qjsc} is the command line compiler: @example ./qjsc -o hello examples/hello.js ./hello @end example generates a @code{hello} executable with no external dependency. @section Command line options @subsection @code{qjs} interpreter @verbatim usage: qjs [options] [file [args]] @end verbatim Options are: @table @code @item -h @item --help List options. @item -e @code{EXPR} @item --eval @code{EXPR} Evaluate EXPR. @item -i @item --interactive Go to interactive mode (it is not the default when files are provided on the command line). @item -m @item --module Load as ES6 module (default=autodetect). A module is autodetected if the filename extension is @code{.mjs} or if the first keyword of the source is @code{import}. @item --script Load as ES6 script (default=autodetect). @item -I file @item --include file Include an additional file. @end table Advanced options are: @table @code @item --std Make the @code{std} and @code{os} modules available to the loaded script even if it is not a module. @item -d @item --dump Dump the memory usage stats. @item -q @item --quit just instantiate the interpreter and quit. @end table @subsection @code{qjsc} compiler @verbatim usage: qjsc [options] [files] @end verbatim Options are: @table @code @item -c Only output bytecode in a C file. The default is to output an executable file. @item -e Output @code{main()} and bytecode in a C file. The default is to output an executable file. @item -o output Set the output filename (default = @file{out.c} or @file{a.out}). @item -N cname Set the C name of the generated data. @item -m Compile as Javascript module (default=autodetect). @item -D module_name Compile a dynamically loaded module and its dependencies. This option is needed when your code uses the @code{import} keyword or the @code{os.Worker} constructor because the compiler cannot statically find the name of the dynamically loaded modules. @item -M module_name[,cname] Add initialization code for an external C module. See the @code{c_module} example. @item -flto Use link time optimization. The compilation is slower but the executable is smaller and faster. This option is automatically set when the @code{-fno-x} options are used. @item -fno-[eval|string-normalize|regexp|json|proxy|map|typedarray|promise|bigint] Disable selected language features to produce a smaller executable file. @end table @section @code{qjscalc} application The @code{qjscalc} application is a superset of the @code{qjs} command line interpreter implementing a Javascript calculator with arbitrarily large integer and floating point numbers, fractions, complex numbers, polynomials and matrices. The source code is in @file{qjscalc.js}. More documentation and a web version are available at @url{http://numcalc.com}. @section Built-in tests Run @code{make test} to run the few built-in tests included in the QuickJS archive. @section Test262 (ECMAScript Test Suite) A test262 runner is included in the QuickJS archive. The test262 tests can be installed in the QuickJS source directory with: @example git clone https://github.com/tc39/test262.git test262 cd test262 patch -p1 < ../tests/test262.patch cd .. @end example The patch adds the implementation specific @code{harness} functions and optimizes the inefficient RegExp character classes and Unicode property escapes tests (the tests themselves are not modified, only a slow string initialization function is optimized). The tests can be run with @example make test2 @end example The configuration files @code{test262.conf} (resp. @code{test262o.conf} for the old ES5.1 tests@footnote{The old ES5.1 tests can be extracted with @code{git clone --single-branch --branch es5-tests https://github.com/tc39/test262.git test262o}})) contain the options to run the various tests. Tests can be excluded based on features or filename. The file @code{test262_errors.txt} contains the current list of errors. The runner displays a message when a new error appears or when an existing error is corrected or modified. Use the @code{-u} option to update the current list of errors (or @code{make test2-update}). The file @code{test262_report.txt} contains the logs of all the tests. It is useful to have a clearer analysis of a particular error. In case of crash, the last line corresponds to the failing test. Use the syntax @code{./run-test262 -c test262.conf -f filename.js} to run a single test. Use the syntax @code{./run-test262 -c test262.conf N} to start testing at test number @code{N}. For more information, run @code{./run-test262} to see the command line options of the test262 runner. @code{run-test262} accepts the @code{-N} option to be invoked from @code{test262-harness}@footnote{@url{https://github.com/bterlson/test262-harness}} thru @code{eshost}. Unless you want to compare QuickJS with other engines under the same conditions, we do not recommend to run the tests this way as it is much slower (typically half an hour instead of about 100 seconds). @chapter Specifications @section Language support @subsection ES2020 support The ES2020 specification is almost fully supported including the Annex B (legacy web compatibility) and the Unicode related features. The following features are not supported yet: @itemize @item Tail calls@footnote{We believe the current specification of tails calls is too complicated and presents limited practical interests.} @end itemize @subsection ECMA402 ECMA402 (Internationalization API) is not supported. @subsection Extensions @itemize @item The first line of a script beginning with @code{#!} is ignored. @end itemize @section Modules ES6 modules are fully supported. The default name resolution is the following: @itemize @item Module names with a leading @code{.} or @code{..} are relative to the current module path. @item Module names without a leading @code{.} or @code{..} are system modules, such as @code{std} or @code{os}. @item Module names ending with @code{.so} are native modules using the QuickJS C API. @end itemize @section Standard library The standard library is included by default in the command line interpreter. It contains the two modules @code{std} and @code{os} and a few global objects. @subsection Global objects @table @code @item scriptArgs Provides the command line arguments. The first argument is the script name. @item print(...args) Print the arguments separated by spaces and a trailing newline. @item console.log(...args) Same as print(). @end table @subsection @code{std} module The @code{std} module provides wrappers to the libc @file{stdlib.h} and @file{stdio.h} and a few other utilities. Available exports: @table @code @item exit(n) Exit the process. @item evalScript(str, options = undefined) Evaluate the string @code{str} as a script (global eval). @code{options} is an optional object containing the following optional properties: @table @code @item backtrace_barrier Boolean (default = false). If true, error backtraces do not list the stack frames below the evalScript. @item async Boolean (default = false). If true, @code{await} is accepted in the script and a promise is returned. The promise is resolved with an object whose @code{value} property holds the value returned by the script. @end table @item loadScript(filename) Evaluate the file @code{filename} as a script (global eval). @item loadFile(filename) Load the file @code{filename} and return it as a string assuming UTF-8 encoding. Return @code{null} in case of I/O error. @item open(filename, flags, errorObj = undefined) Open a file (wrapper to the libc @code{fopen()}). Return the FILE object or @code{null} in case of I/O error. If @code{errorObj} is not undefined, set its @code{errno} property to the error code or to 0 if no error occured. @item popen(command, flags, errorObj = undefined) Open a process by creating a pipe (wrapper to the libc @code{popen()}). Return the FILE object or @code{null} in case of I/O error. If @code{errorObj} is not undefined, set its @code{errno} property to the error code or to 0 if no error occured. @item fdopen(fd, flags, errorObj = undefined) Open a file from a file handle (wrapper to the libc @code{fdopen()}). Return the FILE object or @code{null} in case of I/O error. If @code{errorObj} is not undefined, set its @code{errno} property to the error code or to 0 if no error occured. @item tmpfile(errorObj = undefined) Open a temporary file. Return the FILE object or @code{null} in case of I/O error. If @code{errorObj} is not undefined, set its @code{errno} property to the error code or to 0 if no error occured. @item puts(str) Equivalent to @code{std.out.puts(str)}. @item printf(fmt, ...args) Equivalent to @code{std.out.printf(fmt, ...args)}. @item sprintf(fmt, ...args) Equivalent to the libc sprintf(). @item in @item out @item err Wrappers to the libc file @code{stdin}, @code{stdout}, @code{stderr}. @item SEEK_SET @item SEEK_CUR @item SEEK_END Constants for seek(). @item Error Enumeration object containing the integer value of common errors (additional error codes may be defined): @table @code @item EINVAL @item EIO @item EACCES @item EEXIST @item ENOSPC @item ENOSYS @item EBUSY @item ENOENT @item EPERM @item EPIPE @end table @item strerror(errno) Return a string that describes the error @code{errno}. @item gc() Manually invoke the cycle removal algorithm. The cycle removal algorithm is automatically started when needed, so this function is useful in case of specific memory constraints or for testing. @item getenv(name) Return the value of the environment variable @code{name} or @code{undefined} if it is not defined. @item setenv(name, value) Set the value of the environment variable @code{name} to the string @code{value}. @item unsetenv(name) Delete the environment variable @code{name}. @item getenviron() Return an object containing the environment variables as key-value pairs. @item urlGet(url, options = undefined) Download @code{url} using the @file{curl} command line utility. @code{options} is an optional object containing the following optional properties: @table @code @item binary Boolean (default = false). If true, the response is an ArrayBuffer instead of a string. When a string is returned, the data is assumed to be UTF-8 encoded. @item full Boolean (default = false). If true, return the an object contains the properties @code{response} (response content), @code{responseHeaders} (headers separated by CRLF), @code{status} (status code). @code{response} is @code{null} is case of protocol or network error. If @code{full} is false, only the response is returned if the status is between 200 and 299. Otherwise @code{null} is returned. @end table @end table FILE prototype: @table @code @item close() Close the file. Return 0 if OK or @code{-errno} in case of I/O error. @item puts(str) Outputs the string with the UTF-8 encoding. @item printf(fmt, ...args) Formatted printf. The same formats as the standard C library @code{printf} are supported. Integer format types (e.g. @code{%d}) truncate the Numbers or BigInts to 32 bits. Use the @code{l} modifier (e.g. @code{%ld}) to truncate to 64 bits. @item flush() Flush the buffered file. @item seek(offset, whence) Seek to a give file position (whence is @code{std.SEEK_*}). @code{offset} can be a number or a bigint. Return 0 if OK or @code{-errno} in case of I/O error. @item tell() Return the current file position. @item tello() Return the current file position as a bigint. @item eof() Return true if end of file. @item fileno() Return the associated OS handle. @item error() Return true if there was an error. @item clearerr() Clear the error indication. @item read(buffer, position, length) Read @code{length} bytes from the file to the ArrayBuffer @code{buffer} at byte position @code{position} (wrapper to the libc @code{fread}). @item write(buffer, position, length) Write @code{length} bytes to the file from the ArrayBuffer @code{buffer} at byte position @code{position} (wrapper to the libc @code{fwrite}). @item getline() Return the next line from the file, assuming UTF-8 encoding, excluding the trailing line feed. @item readAsString(max_size = undefined) Read @code{max_size} bytes from the file and return them as a string assuming UTF-8 encoding. If @code{max_size} is not present, the file is read up its end. @item getByte() Return the next byte from the file. Return -1 if the end of file is reached. @item putByte(c) Write one byte to the file. @end table @subsection @code{os} module The @code{os} module provides Operating System specific functions: @itemize @item low level file access @item signals @item timers @item asynchronous I/O @item workers (threads) @end itemize The OS functions usually return 0 if OK or an OS specific negative error code. Available exports: @table @code @item open(filename, flags, mode = 0o666) Open a file. Return a handle or < 0 if error. @item O_RDONLY @item O_WRONLY @item O_RDWR @item O_APPEND @item O_CREAT @item O_EXCL @item O_TRUNC POSIX open flags. @item O_TEXT (Windows specific). Open the file in text mode. The default is binary mode. @item close(fd) Close the file handle @code{fd}. @item seek(fd, offset, whence) Seek in the file. Use @code{std.SEEK_*} for @code{whence}. @code{offset} is either a number or a bigint. If @code{offset} is a bigint, a bigint is returned too. @item read(fd, buffer, offset, length) Read @code{length} bytes from the file handle @code{fd} to the ArrayBuffer @code{buffer} at byte position @code{offset}. Return the number of read bytes or < 0 if error. @item write(fd, buffer, offset, length) Write @code{length} bytes to the file handle @code{fd} from the ArrayBuffer @code{buffer} at byte position @code{offset}. Return the number of written bytes or < 0 if error. @item isatty(fd) Return @code{true} is @code{fd} is a TTY (terminal) handle. @item ttyGetWinSize(fd) Return the TTY size as @code{[width, height]} or @code{null} if not available. @item ttySetRaw(fd) Set the TTY in raw mode. @item remove(filename) Remove a file. Return 0 if OK or @code{-errno}. @item rename(oldname, newname) Rename a file. Return 0 if OK or @code{-errno}. @item realpath(path) Return @code{[str, err]} where @code{str} is the canonicalized absolute pathname of @code{path} and @code{err} the error code. @item getcwd() Return @code{[str, err]} where @code{str} is the current working directory and @code{err} the error code. @item chdir(path) Change the current directory. Return 0 if OK or @code{-errno}. @item mkdir(path, mode = 0o777) Create a directory at @code{path}. Return 0 if OK or @code{-errno}. @item stat(path) @item lstat(path) Return @code{[obj, err]} where @code{obj} is an object containing the file status of @code{path}. @code{err} is the error code. The following fields are defined in @code{obj}: dev, ino, mode, nlink, uid, gid, rdev, size, blocks, atime, mtime, ctime. The times are specified in milliseconds since 1970. @code{lstat()} is the same as @code{stat()} excepts that it returns information about the link itself. @item S_IFMT @item S_IFIFO @item S_IFCHR @item S_IFDIR @item S_IFBLK @item S_IFREG @item S_IFSOCK @item S_IFLNK @item S_ISGID @item S_ISUID Constants to interpret the @code{mode} property returned by @code{stat()}. They have the same value as in the C system header @file{sys/stat.h}. @item utimes(path, atime, mtime) Change the access and modification times of the file @code{path}. The times are specified in milliseconds since 1970. Return 0 if OK or @code{-errno}. @item symlink(target, linkpath) Create a link at @code{linkpath} containing the string @code{target}. Return 0 if OK or @code{-errno}. @item readlink(path) Return @code{[str, err]} where @code{str} is the link target and @code{err} the error code. @item readdir(path) Return @code{[array, err]} where @code{array} is an array of strings containing the filenames of the directory @code{path}. @code{err} is the error code. @item setReadHandler(fd, func) Add a read handler to the file handle @code{fd}. @code{func} is called each time there is data pending for @code{fd}. A single read handler per file handle is supported. Use @code{func = null} to remove the handler. @item setWriteHandler(fd, func) Add a write handler to the file handle @code{fd}. @code{func} is called each time data can be written to @code{fd}. A single write handler per file handle is supported. Use @code{func = null} to remove the handler. @item signal(signal, func) Call the function @code{func} when the signal @code{signal} happens. Only a single handler per signal number is supported. Use @code{null} to set the default handler or @code{undefined} to ignore the signal. Signal handlers can only be defined in the main thread. @item SIGINT @item SIGABRT @item SIGFPE @item SIGILL @item SIGSEGV @item SIGTERM POSIX signal numbers. @item kill(pid, sig) Send the signal @code{sig} to the process @code{pid}. @item exec(args[, options]) Execute a process with the arguments @code{args}. @code{options} is an object containing optional parameters: @table @code @item block Boolean (default = true). If true, wait until the process is terminated. In this case, @code{exec} return the exit code if positive or the negated signal number if the process was interrupted by a signal. If false, do not block and return the process id of the child. @item usePath Boolean (default = true). If true, the file is searched in the @code{PATH} environment variable. @item file String (default = @code{args[0]}). Set the file to be executed. @item cwd String. If present, set the working directory of the new process. @item stdin @item stdout @item stderr If present, set the handle in the child for stdin, stdout or stderr. @item env Object. If present, set the process environment from the object key-value pairs. Otherwise use the same environment as the current process. @item uid Integer. If present, the process uid with @code{setuid}. @item gid Integer. If present, the process gid with @code{setgid}. @end table @item waitpid(pid, options) @code{waitpid} Unix system call. Return the array @code{[ret, status]}. @code{ret} contains @code{-errno} in case of error. @item WNOHANG Constant for the @code{options} argument of @code{waitpid}. @item dup(fd) @code{dup} Unix system call. @item dup2(oldfd, newfd) @code{dup2} Unix system call. @item pipe() @code{pipe} Unix system call. Return two handles as @code{[read_fd, write_fd]} or null in case of error. @item sleep(delay_ms) Sleep during @code{delay_ms} milliseconds. @item sleepAsync(delay_ms) Asynchronouse sleep during @code{delay_ms} milliseconds. Returns a promise. Example: @example await os.sleepAsync(500); @end example @item setTimeout(func, delay) Call the function @code{func} after @code{delay} ms. Return a handle to the timer. @item clearTimeout(handle) Cancel a timer. @item platform Return a string representing the platform: @code{"linux"}, @code{"darwin"}, @code{"win32"} or @code{"js"}. @item Worker(module_filename) Constructor to create a new thread (worker) with an API close to the @code{WebWorkers}. @code{module_filename} is a string specifying the module filename which is executed in the newly created thread. As for dynamically imported module, it is relative to the current script or module path. Threads normally don't share any data and communicate between each other with messages. Nested workers are not supported. An example is available in @file{tests/test_worker.js}. The worker class has the following static properties: @table @code @item parent In the created worker, @code{Worker.parent} represents the parent worker and is used to send or receive messages. @end table The worker instances have the following properties: @table @code @item postMessage(msg) Send a message to the corresponding worker. @code{msg} is cloned in the destination worker using an algorithm similar to the @code{HTML} structured clone algorithm. @code{SharedArrayBuffer} are shared between workers. Current limitations: @code{Map} and @code{Set} are not supported yet. @item onmessage Getter and setter. Set a function which is called each time a message is received. The function is called with a single argument. It is an object with a @code{data} property containing the received message. The thread is not terminated if there is at least one non @code{null} @code{onmessage} handler. @end table @end table @section QuickJS C API The C API was designed to be simple and efficient. The C API is defined in the header @code{quickjs.h}. @subsection Runtime and contexts @code{JSRuntime} represents a Javascript runtime corresponding to an object heap. Several runtimes can exist at the same time but they cannot exchange objects. Inside a given runtime, no multi-threading is supported. @code{JSContext} represents a Javascript context (or Realm). Each JSContext has its own global objects and system objects. There can be several JSContexts per JSRuntime and they can share objects, similar to frames of the same origin sharing Javascript objects in a web browser. @subsection JSValue @code{JSValue} represents a Javascript value which can be a primitive type or an object. Reference counting is used, so it is important to explicitly duplicate (@code{JS_DupValue()}, increment the reference count) or free (@code{JS_FreeValue()}, decrement the reference count) JSValues. @subsection C functions C functions can be created with @code{JS_NewCFunction()}. @code{JS_SetPropertyFunctionList()} is a shortcut to easily add functions, setters and getters properties to a given object. Unlike other embedded Javascript engines, there is no implicit stack, so C functions get their parameters as normal C parameters. As a general rule, C functions take constant @code{JSValue}s as parameters (so they don't need to free them) and return a newly allocated (=live) @code{JSValue}. @subsection Exceptions Exceptions: most C functions can return a Javascript exception. It must be explicitly tested and handled by the C code. The specific @code{JSValue} @code{JS_EXCEPTION} indicates that an exception occurred. The actual exception object is stored in the @code{JSContext} and can be retrieved with @code{JS_GetException()}. @subsection Script evaluation Use @code{JS_Eval()} to evaluate a script or module source. If the script or module was compiled to bytecode with @code{qjsc}, it can be evaluated by calling @code{js_std_eval_binary()}. The advantage is that no compilation is needed so it is faster and smaller because the compiler can be removed from the executable if no @code{eval} is required. Note: the bytecode format is linked to a given QuickJS version. Moreover, no security check is done before its execution. Hence the bytecode should not be loaded from untrusted sources. That's why there is no option to output the bytecode to a binary file in @code{qjsc}. @subsection JS Classes C opaque data can be attached to a Javascript object. The type of the C opaque data is determined with the class ID (@code{JSClassID}) of the object. Hence the first step is to register a new class ID and JS class (@code{JS_NewClassID()}, @code{JS_NewClass()}). Then you can create objects of this class with @code{JS_NewObjectClass()} and get or set the C opaque point with @code{JS_GetOpaque()}/@code{JS_SetOpaque()}. When defining a new JS class, it is possible to declare a finalizer which is called when the object is destroyed. The finalizer should be used to release C resources. It is invalid to execute JS code from it. A @code{gc_mark} method can be provided so that the cycle removal algorithm can find the other objects referenced by this object. Other methods are available to define exotic object behaviors. The Class ID are globally allocated (i.e. for all runtimes). The JSClass are allocated per @code{JSRuntime}. @code{JS_SetClassProto()} is used to define a prototype for a given class in a given JSContext. @code{JS_NewObjectClass()} sets this prototype in the created object. Examples are available in @file{quickjs-libc.c}. @subsection C Modules Native ES6 modules are supported and can be dynamically or statically linked. The standard library @file{quickjs-libc.c} is a good example of a native module. @subsection Memory handling Use @code{JS_SetMemoryLimit()} to set a global memory allocation limit to a given JSRuntime. Custom memory allocation functions can be provided with @code{JS_NewRuntime2()}. The maximum system stack size can be set with @code{JS_SetMaxStackSize()}. @subsection Execution timeout and interrupts Use @code{JS_SetInterruptHandler()} to set a callback which is regularly called by the engine when it is executing code. This callback can be used to implement an execution timeout. It is used by the command line interpreter to implement a @code{Ctrl-C} handler. @chapter Internals @section Bytecode The compiler generates bytecode directly with no intermediate representation such as a parse tree, hence it is very fast. Several optimizations passes are done over the generated bytecode. A stack-based bytecode was chosen because it is simple and generates compact code. For each function, the maximum stack size is computed at compile time so that no runtime stack overflow tests are needed. A separate compressed line number table is maintained for the debug information. Access to closure variables is optimized and is almost as fast as local variables. Direct @code{eval} in strict mode is optimized. @section Executable generation @subsection @code{qjsc} compiler The @code{qjsc} compiler generates C sources from Javascript files. By default the C sources are compiled with the system compiler (@code{gcc} or @code{clang}). The generated C source contains the bytecode of the compiled functions or modules. If a full complete executable is needed, it also contains a @code{main()} function with the necessary C code to initialize the Javascript engine and to load and execute the compiled functions and modules. Javascript code can be mixed with C modules. In order to have smaller executables, specific Javascript features can be disabled, in particular @code{eval} or the regular expressions. The code removal relies on the Link Time Optimization of the system compiler. @subsection Binary JSON @code{qjsc} works by compiling scripts or modules and then serializing them to a binary format. A subset of this format (without functions or modules) can be used as binary JSON. The example @file{test_bjson.js} shows how to use it. Warning: the binary JSON format may change without notice, so it should not be used to store persistent data. The @file{test_bjson.js} example is only used to test the binary object format functions. @section Runtime @subsection Strings Strings are stored either as an 8 bit or a 16 bit array of characters. Hence random access to characters is always fast. The C API provides functions to convert Javascript Strings to C UTF-8 encoded strings. The most common case where the Javascript string contains only ASCII characters involves no copying. @subsection Objects The object shapes (object prototype, property names and flags) are shared between objects to save memory. Arrays with no holes (except at the end of the array) are optimized. TypedArray accesses are optimized. @subsection Atoms Object property names and some strings are stored as Atoms (unique strings) to save memory and allow fast comparison. Atoms are represented as a 32 bit integer. Half of the atom range is reserved for immediate integer literals from @math{0} to @math{2^{31}-1}. @subsection Numbers Numbers are represented either as 32-bit signed integers or 64-bit IEEE-754 floating point values. Most operations have fast paths for the 32-bit integer case. @subsection Garbage collection Reference counting is used to free objects automatically and deterministically. A separate cycle removal pass is done when the allocated memory becomes too large. The cycle removal algorithm only uses the reference counts and the object content, so no explicit garbage collection roots need to be manipulated in the C code. @subsection JSValue It is a Javascript value which can be a primitive type (such as Number, String, ...) or an Object. NaN boxing is used in the 32-bit version to store 64-bit floating point numbers. The representation is optimized so that 32-bit integers and reference counted values can be efficiently tested. In 64-bit code, JSValue are 128-bit large and no NaN boxing is used. The rationale is that in 64-bit code memory usage is less critical. In both cases (32 or 64 bits), JSValue exactly fits two CPU registers, so it can be efficiently returned by C functions. @subsection Function call The engine is optimized so that function calls are fast. The system stack holds the Javascript parameters and local variables. @section RegExp A specific regular expression engine was developed. It is both small and efficient and supports all the ES2020 features including the Unicode properties. As the Javascript compiler, it directly generates bytecode without a parse tree. Backtracking with an explicit stack is used so that there is no recursion on the system stack. Simple quantifiers are specifically optimized to avoid recursions. Infinite recursions coming from quantifiers with empty terms are avoided. The full regexp library weights about 15 KiB (x86 code), excluding the Unicode library. @section Unicode A specific Unicode library was developed so that there is no dependency on an external large Unicode library such as ICU. All the Unicode tables are compressed while keeping a reasonable access speed. The library supports case conversion, Unicode normalization, Unicode script queries, Unicode general category queries and all Unicode binary properties. The full Unicode library weights about 45 KiB (x86 code). @section BigInt BigInt is implemented with the @code{libbf} library@footnote{@url{https://bellard.org/libbf}}. It weights about 90 KiB (x86 code) and provides arbitrary precision IEEE 754 floating point operations and transcendental functions with exact rounding. @chapter License QuickJS is released under the MIT license. Unless otherwise specified, the QuickJS sources are copyright Fabrice Bellard and Charlie Gordon. @bye