quickjs-done/libbf.h

500 lines
16 KiB
C
Raw Normal View History

2020-09-06 16:53:08 +00:00
/*
* Tiny arbitrary precision floating point library
*
* Copyright (c) 2017-2020 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef LIBBF_H
#define LIBBF_H
#include <stddef.h>
#include <stdint.h>
#if defined(__x86_64__)
#define LIMB_LOG2_BITS 6
#else
#define LIMB_LOG2_BITS 5
#endif
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
#if LIMB_BITS == 64
typedef __int128 int128_t;
typedef unsigned __int128 uint128_t;
typedef int64_t slimb_t;
typedef uint64_t limb_t;
typedef uint128_t dlimb_t;
#define EXP_MIN INT64_MIN
#define EXP_MAX INT64_MAX
#define LIMB_DIGITS 19
#define BF_DEC_BASE UINT64_C(10000000000000000000)
#else
typedef int32_t slimb_t;
typedef uint32_t limb_t;
typedef uint64_t dlimb_t;
#define EXP_MIN INT32_MIN
#define EXP_MAX INT32_MAX
#define LIMB_DIGITS 9
#define BF_DEC_BASE 1000000000U
#endif
/* in bits */
#define BF_EXP_BITS_MIN 3
#define BF_EXP_BITS_MAX (LIMB_BITS - 2)
#define BF_PREC_MIN 2
#define BF_PREC_MAX (((limb_t)1 << BF_EXP_BITS_MAX) - 2)
#define BF_PREC_INF (BF_PREC_MAX + 1) /* infinite precision */
#if LIMB_BITS == 64
#define BF_CHKSUM_MOD (UINT64_C(975620677) * UINT64_C(9795002197))
#else
#define BF_CHKSUM_MOD 975620677U
#endif
#define BF_EXP_ZERO EXP_MIN
#define BF_EXP_INF (EXP_MAX - 1)
#define BF_EXP_NAN EXP_MAX
/* +/-zero is represented with expn = BF_EXP_ZERO and len = 0,
+/-infinity is represented with expn = BF_EXP_INF and len = 0,
NaN is represented with expn = BF_EXP_NAN and len = 0 (sign is ignored)
*/
typedef struct {
struct bf_context_t *ctx;
int sign;
slimb_t expn;
limb_t len;
limb_t *tab;
} bf_t;
typedef struct {
/* must be kept identical to bf_t */
struct bf_context_t *ctx;
int sign;
slimb_t expn;
limb_t len;
limb_t *tab;
} bfdec_t;
typedef enum {
BF_RNDN, /* round to nearest, ties to even */
BF_RNDZ, /* round to zero */
BF_RNDD, /* round to -inf */
BF_RNDU, /* round to +inf */
BF_RNDNA, /* round to nearest, ties away from zero */
BF_RNDNU, /* round to nearest, ties to +inf */
BF_RNDF, /* faithful rounding (nondeterministic, either RNDD or RNDU,
inexact flag is always set) */
} bf_rnd_t;
/* allow subnormal numbers. Only available if the number of exponent
bits is < BF_EXP_BITS_MAX and prec != BF_PREC_INF. Not supported
for decimal floating point numbers. */
#define BF_FLAG_SUBNORMAL (1 << 3)
/* 'prec' is the precision after the radix point instead of the whole
mantissa. Can only be used with bf_round(), bfdec_round() and
bfdev_div(). */
#define BF_FLAG_RADPNT_PREC (1 << 4)
#define BF_RND_MASK 0x7
#define BF_EXP_BITS_SHIFT 5
#define BF_EXP_BITS_MASK 0x3f
/* contains the rounding mode and number of exponents bits */
typedef uint32_t bf_flags_t;
typedef void *bf_realloc_func_t(void *opaque, void *ptr, size_t size);
typedef struct {
bf_t val;
limb_t prec;
} BFConstCache;
typedef struct bf_context_t {
void *realloc_opaque;
bf_realloc_func_t *realloc_func;
BFConstCache log2_cache;
BFConstCache pi_cache;
struct BFNTTState *ntt_state;
} bf_context_t;
static inline int bf_get_exp_bits(bf_flags_t flags)
{
return BF_EXP_BITS_MAX - ((flags >> BF_EXP_BITS_SHIFT) & BF_EXP_BITS_MASK);
}
static inline bf_flags_t bf_set_exp_bits(int n)
{
return (BF_EXP_BITS_MAX - n) << BF_EXP_BITS_SHIFT;
}
/* returned status */
#define BF_ST_INVALID_OP (1 << 0)
#define BF_ST_DIVIDE_ZERO (1 << 1)
#define BF_ST_OVERFLOW (1 << 2)
#define BF_ST_UNDERFLOW (1 << 3)
#define BF_ST_INEXACT (1 << 4)
/* indicate that a memory allocation error occured. NaN is returned */
#define BF_ST_MEM_ERROR (1 << 5)
#define BF_RADIX_MAX 36 /* maximum radix for bf_atof() and bf_ftoa() */
static inline slimb_t bf_max(slimb_t a, slimb_t b)
{
if (a > b)
return a;
else
return b;
}
static inline slimb_t bf_min(slimb_t a, slimb_t b)
{
if (a < b)
return a;
else
return b;
}
void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
void *realloc_opaque);
void bf_context_end(bf_context_t *s);
/* free memory allocated for the bf cache data */
void bf_clear_cache(bf_context_t *s);
static inline void *bf_realloc(bf_context_t *s, void *ptr, size_t size)
{
return s->realloc_func(s->realloc_opaque, ptr, size);
}
/* 'size' must be != 0 */
static inline void *bf_malloc(bf_context_t *s, size_t size)
{
return bf_realloc(s, NULL, size);
}
static inline void bf_free(bf_context_t *s, void *ptr)
{
/* must test ptr otherwise equivalent to malloc(0) */
if (ptr)
bf_realloc(s, ptr, 0);
}
void bf_init(bf_context_t *s, bf_t *r);
static inline void bf_delete(bf_t *r)
{
bf_context_t *s = r->ctx;
/* we accept to delete a zeroed bf_t structure */
if (s && r->tab) {
bf_realloc(s, r->tab, 0);
}
}
static inline void bf_neg(bf_t *r)
{
r->sign ^= 1;
}
static inline int bf_is_finite(const bf_t *a)
{
return (a->expn < BF_EXP_INF);
}
static inline int bf_is_nan(const bf_t *a)
{
return (a->expn == BF_EXP_NAN);
}
static inline int bf_is_zero(const bf_t *a)
{
return (a->expn == BF_EXP_ZERO);
}
static inline void bf_memcpy(bf_t *r, const bf_t *a)
{
*r = *a;
}
int bf_set_ui(bf_t *r, uint64_t a);
int bf_set_si(bf_t *r, int64_t a);
void bf_set_nan(bf_t *r);
void bf_set_zero(bf_t *r, int is_neg);
void bf_set_inf(bf_t *r, int is_neg);
int bf_set(bf_t *r, const bf_t *a);
void bf_move(bf_t *r, bf_t *a);
int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode);
int bf_set_float64(bf_t *a, double d);
int bf_cmpu(const bf_t *a, const bf_t *b);
int bf_cmp_full(const bf_t *a, const bf_t *b);
int bf_cmp_eq(const bf_t *a, const bf_t *b);
int bf_cmp_le(const bf_t *a, const bf_t *b);
int bf_cmp_lt(const bf_t *a, const bf_t *b);
int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec, bf_flags_t flags);
int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec, bf_flags_t flags);
int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
bf_flags_t flags);
int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags);
int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
#define BF_DIVREM_EUCLIDIAN BF_RNDF
int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
limb_t prec, bf_flags_t flags, int rnd_mode);
int bf_fmod(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
bf_flags_t flags);
int bf_remainder(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
bf_flags_t flags);
int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
bf_flags_t flags);
/* round to integer with infinite precision */
int bf_rint(bf_t *r, int rnd_mode);
int bf_round(bf_t *r, limb_t prec, bf_flags_t flags);
int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a);
int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
slimb_t bf_get_exp_min(const bf_t *a);
int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b);
int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b);
int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b);
/* additional flags for bf_atof */
/* do not accept hex radix prefix (0x or 0X) if radix = 0 or radix = 16 */
#define BF_ATOF_NO_HEX (1 << 16)
/* accept binary (0b or 0B) or octal (0o or 0O) radix prefix if radix = 0 */
#define BF_ATOF_BIN_OCT (1 << 17)
/* Do not parse NaN or Inf */
#define BF_ATOF_NO_NAN_INF (1 << 18)
/* return the exponent separately */
#define BF_ATOF_EXPONENT (1 << 19)
int bf_atof(bf_t *a, const char *str, const char **pnext, int radix,
limb_t prec, bf_flags_t flags);
/* this version accepts prec = BF_PREC_INF and returns the radix
exponent */
int bf_atof2(bf_t *r, slimb_t *pexponent,
const char *str, const char **pnext, int radix,
limb_t prec, bf_flags_t flags);
int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
slimb_t expn, limb_t prec, bf_flags_t flags);
/* Conversion of floating point number to string. Return a null
terminated string or NULL if memory error. *plen contains its
length if plen != NULL. The exponent letter is "e" for base 10,
"p" for bases 2, 8, 16 with the binary exponent and "@" for the
other bases. */
#define BF_FTOA_FORMAT_MASK (3 << 16)
/* fixed format: prec significant digits rounded with (flags &
BF_RND_MASK). Exponential notation is used if too many zeros are
needed.*/
#define BF_FTOA_FORMAT_FIXED (0 << 16)
/* fractional format: prec digits after the decimal point rounded with
(flags & BF_RND_MASK) */
#define BF_FTOA_FORMAT_FRAC (1 << 16)
/* free format: use as many digits as necessary so that bf_atof()
return the same number when using precision 'prec', rounding to
nearest and the subnormal+exponent configuration of 'flags'. The
result is meaningful only if 'a' is already rounded to the wanted
precision.
Infinite precision (BF_PREC_INF) is supported when the radix is a
power of two. */
#define BF_FTOA_FORMAT_FREE (2 << 16)
/* same as BF_FTOA_FORMAT_FREE but uses the minimum number of digits
(takes more computation time). */
#define BF_FTOA_FORMAT_FREE_MIN (3 << 16)
/* force exponential notation for fixed or free format */
#define BF_FTOA_FORCE_EXP (1 << 20)
/* add 0x prefix for base 16, 0o prefix for base 8 or 0b prefix for
base 2 if non zero value */
#define BF_FTOA_ADD_PREFIX (1 << 21)
/* return "Infinity" instead of "Inf" and add a "+" for positive
exponents */
#define BF_FTOA_JS_QUIRKS (1 << 22)
char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
bf_flags_t flags);
/* modulo 2^n instead of saturation. NaN and infinity return 0 */
#define BF_GET_INT_MOD (1 << 0)
int bf_get_int32(int *pres, const bf_t *a, int flags);
int bf_get_int64(int64_t *pres, const bf_t *a, int flags);
/* the following functions are exported for testing only. */
void mp_print_str(const char *str, const limb_t *tab, limb_t n);
void bf_print_str(const char *str, const bf_t *a);
int bf_resize(bf_t *r, limb_t len);
int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len);
int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags);
int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k);
slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
int is_ceil1);
int mp_mul(bf_context_t *s, limb_t *result,
const limb_t *op1, limb_t op1_size,
const limb_t *op2, limb_t op2_size);
limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
limb_t n, limb_t carry);
limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n);
int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n);
int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n);
limb_t bf_isqrt(limb_t a);
/* transcendental functions */
int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags);
int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags);
int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
#define BF_POW_JS_QUICKS (1 << 16)
int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags);
int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
limb_t prec, bf_flags_t flags);
int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
/* decimal floating point */
static inline void bfdec_init(bf_context_t *s, bfdec_t *r)
{
bf_init(s, (bf_t *)r);
}
static inline void bfdec_delete(bfdec_t *r)
{
bf_delete((bf_t *)r);
}
static inline void bfdec_neg(bfdec_t *r)
{
r->sign ^= 1;
}
static inline int bfdec_is_finite(const bfdec_t *a)
{
return (a->expn < BF_EXP_INF);
}
static inline int bfdec_is_nan(const bfdec_t *a)
{
return (a->expn == BF_EXP_NAN);
}
static inline int bfdec_is_zero(const bfdec_t *a)
{
return (a->expn == BF_EXP_ZERO);
}
static inline void bfdec_memcpy(bfdec_t *r, const bfdec_t *a)
{
bf_memcpy((bf_t *)r, (const bf_t *)a);
}
int bfdec_set_ui(bfdec_t *r, uint64_t a);
int bfdec_set_si(bfdec_t *r, int64_t a);
static inline void bfdec_set_nan(bfdec_t *r)
{
bf_set_nan((bf_t *)r);
}
static inline void bfdec_set_zero(bfdec_t *r, int is_neg)
{
bf_set_zero((bf_t *)r, is_neg);
}
static inline void bfdec_set_inf(bfdec_t *r, int is_neg)
{
bf_set_inf((bf_t *)r, is_neg);
}
static inline int bfdec_set(bfdec_t *r, const bfdec_t *a)
{
return bf_set((bf_t *)r, (bf_t *)a);
}
static inline void bfdec_move(bfdec_t *r, bfdec_t *a)
{
bf_move((bf_t *)r, (bf_t *)a);
}
static inline int bfdec_cmpu(const bfdec_t *a, const bfdec_t *b)
{
return bf_cmpu((const bf_t *)a, (const bf_t *)b);
}
static inline int bfdec_cmp_full(const bfdec_t *a, const bfdec_t *b)
{
return bf_cmp_full((const bf_t *)a, (const bf_t *)b);
}
static inline int bfdec_cmp_eq(const bfdec_t *a, const bfdec_t *b)
{
return bf_cmp_eq((const bf_t *)a, (const bf_t *)b);
}
static inline int bfdec_cmp_le(const bfdec_t *a, const bfdec_t *b)
{
return bf_cmp_le((const bf_t *)a, (const bf_t *)b);
}
static inline int bfdec_cmp_lt(const bfdec_t *a, const bfdec_t *b)
{
return bf_cmp_lt((const bf_t *)a, (const bf_t *)b);
}
int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
bf_flags_t flags);
int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
bf_flags_t flags);
int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
bf_flags_t flags);
int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
bf_flags_t flags);
int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
bf_flags_t flags);
int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
bf_flags_t flags);
int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
limb_t prec, bf_flags_t flags, int rnd_mode);
int bfdec_fmod(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
bf_flags_t flags);
int bfdec_rint(bfdec_t *r, int rnd_mode);
int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags);
int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags);
int bfdec_get_int32(int *pres, const bfdec_t *a);
int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b);
char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags);
int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
limb_t prec, bf_flags_t flags);
/* the following functions are exported for testing only. */
extern limb_t mp_pow_dec[LIMB_DIGITS + 1];
void bfdec_print_str(const char *str, const bfdec_t *a);
static inline int bfdec_resize(bfdec_t *r, limb_t len)
{
return bf_resize((bf_t *)r, len);
}
int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags);
#endif /* LIBBF_H */