Poodletooth-iLand/panda/direct/interval/MetaInterval.py

630 lines
23 KiB
Python
Raw Normal View History

2015-03-03 22:10:12 +00:00
"""Undocumented Module"""
__all__ = ['MetaInterval', 'Sequence', 'Parallel', 'ParallelEndTogether', 'Track']
from pandac.PandaModules import *
from direct.directnotify.DirectNotifyGlobal import *
from IntervalManager import ivalMgr
import Interval
from direct.task.Task import Task, TaskManager
import types
if __debug__:
import direct.showbase.PythonUtil as PythonUtil
PREVIOUS_END = CMetaInterval.RSPreviousEnd
PREVIOUS_START = CMetaInterval.RSPreviousBegin
TRACK_START = CMetaInterval.RSLevelBegin
class MetaInterval(CMetaInterval):
# This is a Python-C++ hybrid class. MetaInterval is a Python
# extension of the C++ class CMetaInterval, which adds some
# Python-specific features (like list management).
# This is the base class of Sequence, Parallel, and Track.
notify = directNotify.newCategory("MetaInterval")
SequenceNum = 1
def __init__(self, *ivals, **kw):
#if __debug__:
# self.debugInitTraceback = PythonUtil.StackTrace(
# "create interval", 1, 10)
name = None
#if len(ivals) == 2 and isinstance(ivals[1], types.StringType):
# # If the second parameter is a string, it's the name.
# name = ivals[1]
# ivals = ivals[0]
#else:
# Look for the name in the keyword params.
if 'name' in kw:
name = kw['name']
del kw['name']
# If the keyword "autoPause" or "autoFinish" is defined to
# non-zero, it means the interval may be automatically paused
# or finished when CIntervalManager::interrupt() is called.
# This is generally called only on a catastrophic situation
# (for instance, the connection to the server being lost) when
# we have to exit right away; these keywords indicate
# intervals that might not be cleaned up by their owners.
autoPause = 0
autoFinish = 0
if 'autoPause' in kw:
autoPause = kw['autoPause']
del kw['autoPause']
if 'autoFinish' in kw:
autoFinish = kw['autoFinish']
del kw['autoFinish']
# A duration keyword specifies the duration the interval will
# appear to have for the purposes of computing the start time
# for subsequent intervals in a sequence or track.
self.phonyDuration = -1
if 'duration' in kw:
self.phonyDuration = kw['duration']
del kw['duration']
if kw:
self.notify.error("Unexpected keyword parameters: %s" % (kw.keys()))
# We must allow the old style: Track([ival0, ival1, ...]) as
# well as the new style: Track(ival0, ival1, ...)
# Note: this breaks in the case of a Track with one tuple:
# Track((0, ival0),). We could go through some effort to fix
# this case, but for now I prefer just to document it as a
# bug, since it will go away when we eventually remove support
# for the old interface.
#if len(ivals) == 1 and \
# (isinstance(ivals[0], types.TupleType) or \
# isinstance(ivals[0], types.ListType)):
# self.ivals = ivals[0]
#else:
self.ivals = ivals
self.__ivalsDirty = 1
if name == None:
name = self.__class__.__name__ + '-%d'
if '%' in name:
name = name % (self.SequenceNum)
MetaInterval.SequenceNum += 1
CMetaInterval.__init__(self, name)
self.__manager = ivalMgr
self.setAutoPause(autoPause)
self.setAutoFinish(autoFinish)
self.pstats = None
if __debug__ and TaskManager.taskTimerVerbose:
self.pname = name.split('-', 1)[0]
self.pstats = PStatCollector("App:Show code:ivalLoop:%s" % (self.pname))
self.pythonIvals = []
# If we are running in debug mode, we validate the intervals
# in the list right away. There's no good reason to do this,
# except that it makes it easier for the programmer to detect
# when a MetaInterval is misdefined at creation time.
assert self.validateComponents(self.ivals)
# Functions to make the MetaInterval object act just like a Python
# list of intervals:
def append(self, ival):
# Appends a single interval to the list so far.
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals.append(ival)
self.__ivalsDirty = 1
assert self.validateComponent(ival)
def extend(self, ivals):
# Appends a list of intervals to the list so far.
self += ivals
def count(self, ival):
# Returns the number of occurrences of the indicated interval.
return self.ivals.count(ival)
def index(self, ival):
# Returns the position of the indicated interval within the list.
return self.ivals.index(ival)
def insert(self, index, ival):
# Inserts the given interval into the middle of the list.
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals.insert(index, ival)
self.__ivalsDirty = 1
assert self.validateComponent(ival)
def pop(self, index = None):
# Returns element index (or the last element) and removes it
# from the list.
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.__ivalsDirty = 1
if index == None:
return self.ivals.pop()
else:
return self.ivals.pop(index)
def remove(self, ival):
# Removes the indicated interval from the list.
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals.remove(ival)
self.__ivalsDirty = 1
def reverse(self):
# Reverses the order of the intervals.
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals.reverse()
self.__ivalsDirty = 1
def sort(self, cmpfunc = None):
# Sorts the intervals. (?)
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.__ivalsDirty = 1
if cmpfunc == None:
self.ivals.sort()
else:
self.ivals.sort(cmpfunc)
def __len__(self):
return len(self.ivals)
def __getitem__(self, index):
return self.ivals[index]
def __setitem__(self, index, value):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals[index] = value
self.__ivalsDirty = 1
assert self.validateComponent(value)
def __delitem__(self, index):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
del self.ivals[index]
self.__ivalsDirty = 1
def __getslice__(self, i, j):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
return self.__class__(self.ivals[i: j])
def __setslice__(self, i, j, s):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
self.ivals[i: j] = s
self.__ivalsDirty = 1
assert self.validateComponents(s)
def __delslice__(self, i, j):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
del self.ivals[i: j]
self.__ivalsDirty = 1
def __iadd__(self, other):
if isinstance(self.ivals, types.TupleType):
self.ivals = list(self.ivals)
if isinstance(other, MetaInterval):
assert self.__class__ == other.__class__
ivals = other.ivals
else:
ivals = list(other)
self.ivals += ivals
self.__ivalsDirty = 1
assert self.validateComponents(ivals)
return self
def __add__(self, other):
copy = self[:]
copy += other
return copy
# Functions to define sequence, parallel, and track behaviors:
def addSequence(self, list, name, relTime, relTo, duration):
# Adds the given list of intervals to the MetaInterval to be
# played one after the other.
self.pushLevel(name, relTime, relTo)
for ival in list:
self.addInterval(ival, 0.0, PREVIOUS_END)
self.popLevel(duration)
def addParallel(self, list, name, relTime, relTo, duration):
# Adds the given list of intervals to the MetaInterval to be
# played simultaneously; all will start at the same time.
self.pushLevel(name, relTime, relTo)
for ival in list:
self.addInterval(ival, 0.0, TRACK_START)
self.popLevel(duration)
def addParallelEndTogether(self, list, name, relTime, relTo, duration):
# Adds the given list of intervals to the MetaInterval to be
# played simultaneously; all will end at the same time, but
# the longest interval will be started first to achieve this.
maxDuration = 0
for ival in list:
maxDuration = max(maxDuration, ival.getDuration())
self.pushLevel(name, relTime, relTo)
for ival in list:
self.addInterval(ival, maxDuration - ival.getDuration(), TRACK_START)
self.popLevel(duration)
def addTrack(self, list, name, relTime, relTo, duration):
# Adds a "track list". This is a list of tuples of the form:
#
# (<delay>, <Interval>,
# PREVIOUS_END | PREVIOUS_START | TRACK_START)
#
# where <delay> is a relative time, in seconds, for the
# <Interval> to start, relative to either the end of the
# previous interval (PREVIOUS_END), the start of the previous
# interval (PREVIOUS_START) or the start of the track list
# (TRACK_START). If the relative code is omitted, the default
# is TRACK_START.
self.pushLevel(name, relTime, relTo)
for tuple in list:
if isinstance(tuple, types.TupleType) or \
isinstance(tuple, types.ListType):
relTime = tuple[0]
ival = tuple[1]
if len(tuple) >= 3:
relTo = tuple[2]
else:
relTo = TRACK_START
self.addInterval(ival, relTime, relTo)
else:
self.notify.error("Not a tuple in Track: %s" % (tuple,))
self.popLevel(duration)
def addInterval(self, ival, relTime, relTo):
# Adds the given interval to the MetaInterval.
if isinstance(ival, CInterval):
# It's a C++-style Interval, so add it directly.
if getattr(ival, "inPython", 0):
# Actually, it's been flagged to run in Python, even
# though it's a C++ Interval. It's probably got some
# Python functors that must be invoked at runtime to
# define some of its parameters. Treat it as a Python
# interval.
index = len(self.pythonIvals)
self.pythonIvals.append(ival)
self.addExtIndex(index, ival.getName(), ival.getDuration(),
ival.getOpenEnded(), relTime, relTo)
elif isinstance(ival, MetaInterval):
# It's another MetaInterval, so copy in its intervals
# directly to this object. We could just store the
# MetaInterval itself, which would work, but we get a
# performance advantage by flattening out the deeply
# nested hierarchy into a linear list within the root
# CMetaInterval object.
ival.applyIvals(self, relTime, relTo)
else:
# Nope, a perfectly ordinary C++ interval. Hooray!
self.addCInterval(ival, relTime, relTo)
elif isinstance(ival, Interval.Interval):
# It's a Python-style Interval, so add it as an external.
index = len(self.pythonIvals)
self.pythonIvals.append(ival)
if self.pstats:
ival.pstats = PStatCollector(self.pstats, ival.pname)
self.addExtIndex(index, ival.getName(), ival.getDuration(),
ival.getOpenEnded(), relTime, relTo)
else:
self.notify.error("Not an Interval: %s" % (ival,))
# Functions to support automatic playback of MetaIntervals along
# with all of their associated Python callbacks:
def setManager(self, manager):
rogerroger
self.__manager = manager
CMetaInterval.setManager(self, manager)
def getManager(self):
return self.__manager
def setT(self, t):
self.__updateIvals()
CMetaInterval.setT(self, t)
def start(self, startT = 0.0, endT = -1.0, playRate = 1.0):
self.__updateIvals()
self.setupPlay(startT, endT, playRate, 0)
self.__manager.addInterval(self)
def loop(self, startT = 0.0, endT = -1.0, playRate = 1.0):
self.__updateIvals()
self.setupPlay(startT, endT, playRate, 1)
self.__manager.addInterval(self)
def pause(self):
if self.getState() == CInterval.SStarted:
self.privInterrupt()
self.__manager.removeInterval(self)
self.privPostEvent()
return self.getT()
def resume(self, startT = None):
self.__updateIvals()
if startT != None:
self.setT(startT)
self.setupResume()
self.__manager.addInterval(self)
def resumeUntil(self, endT):
self.__updateIvals()
self.setupResumeUntil(endT)
self.__manager.addInterval(self)
def finish(self):
self.__updateIvals()
state = self.getState()
if state == CInterval.SInitial:
self.privInstant()
elif state != CInterval.SFinal:
self.privFinalize()
self.__manager.removeInterval(self)
self.privPostEvent()
def clearToInitial(self):
# This is overloaded at the Python level to properly call
# pause() at the Python level, then upcall to finish the job
# at the C++ level.
self.pause()
CMetaInterval.clearToInitial(self)
# Internal functions:
def validateComponent(self, component):
# This is called only in debug mode to verify that the
# indicated component added to the MetaInterval is appropriate
# to this type of MetaInterval. In most cases except Track,
# this is the same as asking that the component is itself an
# Interval.
return isinstance(component, CInterval) or \
isinstance(component, Interval.Interval)
def validateComponents(self, components):
# This is called only in debug mode to verify that all the
# components on the indicated list are appropriate to this
# type of MetaInterval.
for component in components:
if not self.validateComponent(component):
return 0
return 1
def __updateIvals(self):
# The MetaInterval object does not create the C++ list of
# Intervals immediately; rather, it stores a Python list of
# Intervals that will be compiled into the C++ list the first
# time it is needed.
# This design allows us to avoid creation of the C++ list for
# nested MetaInterval objects, instead copying all nested
# MetaInterval hierarchy into the root CMetaInterval object,
# for a performance benefit.
# This function is called only on the root MetaInterval
# object, when it is time to build the C++ list for itself.
if self.__ivalsDirty:
self.clearIntervals()
self.applyIvals(self, 0, TRACK_START)
self.__ivalsDirty = 0
def clearIntervals(self):
# This overrides the function defined at the C++ level to
# reset the inPython flag. Clearing out the intervals list
# allows us to run entirely in C++ again, at least until a new
# Python interval gets added.
CMetaInterval.clearIntervals(self)
self.inPython = 0
def applyIvals(self, meta, relTime, relTo):
# Add the intervals listed in this object to the given
# MetaInterval object at the C++ level. This will make the
# other MetaInterval object ready to play the intervals.
# This function should be overridden in a derived class to
# change the intepretation of the intervals in this list. In
# the case of a MetaInterval directly, this is valid only if
# the list has only zero or one intervals.
if len(self.ivals) == 0:
pass
elif len(self.ivals) == 1:
meta.addInterval(self.ivals[0], relTime, relTo)
else:
self.notify.error("Cannot build list from MetaInterval directly.")
def setPlayRate(self, playRate):
""" Changes the play rate of the interval. If the interval is
already started, this changes its speed on-the-fly. Note that
since playRate is a parameter to start() and loop(), the next
call to start() or loop() will reset this parameter. """
if self.isPlaying():
self.pause()
CMetaInterval.setPlayRate(self, playRate)
self.resume()
else:
CMetaInterval.setPlayRate(self, playRate)
def __doPythonCallbacks(self):
# This function invokes any Python-level Intervals that need
# to be invoked at this point in time. It must be called
# after any call to setT() or setFinalT() or stepPlay(), or
# some such; basically any function that might invoke an
# interval. The C++ base class will invoke whatever C++
# intervals it can, and then indicate the Python intervals
# that must be invoked through this interface.
ival = None
try:
while (self.isEventReady()):
index = self.getEventIndex()
t = self.getEventT()
eventType = self.getEventType()
self.popEvent()
ival = self.pythonIvals[index]
ival.privDoEvent(t, eventType)
ival.privPostEvent()
ival = None
except:
if ival != None:
print "Exception occurred while processing %s of %s:" % (ival.getName(), self.getName())
else:
print "Exception occurred while processing %s:" % (self.getName())
print self
raise
def privDoEvent(self, t, event):
# This function overrides the C++ function to initialize the
# intervals first if necessary.
if self.pstats:
self.pstats.start()
self.__updateIvals()
CMetaInterval.privDoEvent(self, t, event)
if self.pstats:
self.pstats.stop()
def privPostEvent(self):
if self.pstats:
self.pstats.start()
self.__doPythonCallbacks()
CMetaInterval.privPostEvent(self)
if self.pstats:
self.pstats.stop()
def setIntervalStartTime(self, *args, **kw):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
# Once we have monkeyed with the interval timings, we'd better
# run the whole thing as a monolithic Python interval, since
# we can't extract the ivals list back out and append them
# into a parent MetaInterval.
self.inPython = 1
return CMetaInterval.setIntervalStartTime(self, *args, **kw)
def getIntervalStartTime(self, *args, **kw):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
return CMetaInterval.getIntervalStartTime(self, *args, **kw)
def getDuration(self):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
return CMetaInterval.getDuration(self)
def __repr__(self, *args, **kw):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
return CMetaInterval.__repr__(self, *args, **kw)
def __str__(self, *args, **kw):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
return CMetaInterval.__str__(self, *args, **kw)
def timeline(self, out = None):
# This function overrides from the parent level to force it to
# update the interval list first, if necessary.
self.__updateIvals()
if out == None:
out = ostream
CMetaInterval.timeline(self, out)
class Sequence(MetaInterval):
def applyIvals(self, meta, relTime, relTo):
meta.addSequence(self.ivals, self.getName(),
relTime, relTo, self.phonyDuration)
class Parallel(MetaInterval):
def applyIvals(self, meta, relTime, relTo):
meta.addParallel(self.ivals, self.getName(),
relTime, relTo, self.phonyDuration)
class ParallelEndTogether(MetaInterval):
def applyIvals(self, meta, relTime, relTo):
meta.addParallelEndTogether(self.ivals, self.getName(),
relTime, relTo, self.phonyDuration)
class Track(MetaInterval):
def applyIvals(self, meta, relTime, relTo):
meta.addTrack(self.ivals, self.getName(),
relTime, relTo, self.phonyDuration)
def validateComponent(self, tuple):
# This is called only in debug mode to verify that the
# indicated component added to the MetaInterval is appropriate
# to this type of MetaInterval. In most cases except Track,
# this is the same as asking that the component is itself an
# Interval.
if not (isinstance(tuple, types.TupleType) or \
isinstance(tuple, types.ListType)):
# It's not a tuple.
return 0
relTime = tuple[0]
ival = tuple[1]
if len(tuple) >= 3:
relTo = tuple[2]
else:
relTo = TRACK_START
if not (isinstance(relTime, types.FloatType) or \
isinstance(relTime, types.IntType)):
# First parameter is not a number.
return 0
if not MetaInterval.validateComponent(self, ival):
# Second parameter is not an interval.
return 0
if relTo != PREVIOUS_END and \
relTo != PREVIOUS_START and \
relTo != TRACK_START:
# Third parameter is an invalid value.
return 0
# Looks good.
return 1