Poodletooth-iLand/panda/direct/task/Task.py

1266 lines
48 KiB
Python
Raw Normal View History

2015-03-03 22:10:12 +00:00
""" This module defines a Python-level wrapper around the C++
AsyncTaskManager interface. It replaces the old full-Python
implementation of the Task system. """
__all__ = ['Task', 'TaskManager',
'cont', 'done', 'again', 'pickup', 'exit',
'sequence', 'loop', 'pause']
from direct.directnotify.DirectNotifyGlobal import *
from direct.showbase import ExceptionVarDump
from direct.showbase.PythonUtil import *
from direct.showbase.MessengerGlobal import messenger
import signal
import types
import time
import random
import string
from pandac.PandaModules import *
def print_exc_plus():
"""
Print the usual traceback information, followed by a listing of all the
local variables in each frame.
"""
import sys
import traceback
tb = sys.exc_info()[2]
while 1:
if not tb.tb_next:
break
tb = tb.tb_next
stack = []
f = tb.tb_frame
while f:
stack.append(f)
f = f.f_back
stack.reverse()
traceback.print_exc()
print "Locals by frame, innermost last"
for frame in stack:
print
print "Frame %s in %s at line %s" % (frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_lineno)
for key, value in frame.f_locals.items():
print "\t%20s = " % key,
#We have to be careful not to cause a new error in our error
#printer! Calling str() on an unknown object could cause an
#error we don't want.
try:
print value
except:
print "<ERROR WHILE PRINTING VALUE>"
# For historical purposes, we remap the C++-defined enumeration to
# these Python names, and define them both at the module level, here,
# and at the class level (below). The preferred access is via the
# class level.
done = AsyncTask.DSDone
cont = AsyncTask.DSCont
again = AsyncTask.DSAgain
pickup = AsyncTask.DSPickup
exit = AsyncTask.DSExit
# Alias PythonTask to Task for historical purposes.
Task = PythonTask
# Copy the module-level enums above into the class level. This funny
# syntax is necessary because it's a C++-wrapped extension type, not a
# true Python class.
Task.DtoolClassDict['done'] = done
Task.DtoolClassDict['cont'] = cont
Task.DtoolClassDict['again'] = again
Task.DtoolClassDict['pickup'] = pickup
Task.DtoolClassDict['exit'] = exit
# Alias the AsyncTaskPause constructor as Task.pause().
pause = AsyncTaskPause
Task.DtoolClassDict['pause'] = staticmethod(pause)
def sequence(*taskList):
seq = AsyncTaskSequence('sequence')
for task in taskList:
seq.addTask(task)
return seq
Task.DtoolClassDict['sequence'] = staticmethod(sequence)
def loop(*taskList):
seq = AsyncTaskSequence('loop')
for task in taskList:
seq.addTask(task)
seq.setRepeatCount(-1)
return seq
Task.DtoolClassDict['loop'] = staticmethod(loop)
class TaskManager:
notify = directNotify.newCategory("TaskManager")
extendedExceptions = False
MaxEpochSpeed = 1.0/30.0
def __init__(self):
self.mgr = AsyncTaskManager.getGlobalPtr()
self.resumeFunc = None
self.globalClock = self.mgr.getClock()
self.stepping = False
self.running = False
self.destroyed = False
self.fKeyboardInterrupt = False
self.interruptCount = 0
self._frameProfileQueue = Queue()
# this will be set when it's safe to import StateVar
self._profileFrames = None
self._frameProfiler = None
self._profileTasks = None
self._taskProfiler = None
self._taskProfileInfo = ScratchPad(
taskId = None,
profiled = False,
session = None,
)
def finalInit(self):
# This function should be called once during startup, after
# most things are imported.
from direct.fsm.StatePush import StateVar
self._profileTasks = StateVar(False)
self.setProfileTasks(ConfigVariableBool('profile-task-spikes', 0).getValue())
self._profileFrames = StateVar(False)
self.setProfileFrames(ConfigVariableBool('profile-frames', 0).getValue())
def destroy(self):
# This should be safe to call multiple times.
self.notify.info("TaskManager.destroy()")
self.destroyed = True
self._frameProfileQueue.clear()
self.mgr.cleanup()
def setClock(self, clockObject):
self.mgr.setClock(clockObject)
self.globalClock = clockObject
def invokeDefaultHandler(self, signalNumber, stackFrame):
print '*** allowing mid-frame keyboard interrupt.'
# Restore default interrupt handler
signal.signal(signal.SIGINT, signal.default_int_handler)
# and invoke it
raise KeyboardInterrupt
def keyboardInterruptHandler(self, signalNumber, stackFrame):
self.fKeyboardInterrupt = 1
self.interruptCount += 1
if self.interruptCount == 1:
print '* interrupt by keyboard'
elif self.interruptCount == 2:
print '** waiting for end of frame before interrupting...'
# The user must really want to interrupt this process
# Next time around invoke the default handler
signal.signal(signal.SIGINT, self.invokeDefaultHandler)
def getCurrentTask(self):
""" Returns the task currently executing on this thread, or
None if this is being called outside of the task manager. """
return Thread.getCurrentThread().getCurrentTask()
def hasTaskChain(self, chainName):
""" Returns true if a task chain with the indicated name has
already been defined, or false otherwise. Note that
setupTaskChain() will implicitly define a task chain if it has
not already been defined, or modify an existing one if it has,
so in most cases there is no need to check this method
first. """
return (self.mgr.findTaskChain(chainName) != None)
def setupTaskChain(self, chainName, numThreads = None, tickClock = None,
threadPriority = None, frameBudget = None,
frameSync = None, timeslicePriority = None):
"""Defines a new task chain. Each task chain executes tasks
potentially in parallel with all of the other task chains (if
numThreads is more than zero). When a new task is created, it
may be associated with any of the task chains, by name (or you
can move a task to another task chain with
task.setTaskChain()). You can have any number of task chains,
but each must have a unique name.
numThreads is the number of threads to allocate for this task
chain. If it is 1 or more, then the tasks on this task chain
will execute in parallel with the tasks on other task chains.
If it is greater than 1, then the tasks on this task chain may
execute in parallel with themselves (within tasks of the same
sort value).
If tickClock is True, then this task chain will be responsible
for ticking the global clock each frame (and thereby
incrementing the frame counter). There should be just one
task chain responsible for ticking the clock, and usually it
is the default, unnamed task chain.
threadPriority specifies the priority level to assign to
threads on this task chain. It may be one of TPLow, TPNormal,
TPHigh, or TPUrgent. This is passed to the underlying
threading system to control the way the threads are scheduled.
frameBudget is the maximum amount of time (in seconds) to
allow this task chain to run per frame. Set it to -1 to mean
no limit (the default). It's not directly related to
threadPriority.
frameSync is true to force the task chain to sync to the
clock. When this flag is false, the default, the task chain
will finish all of its tasks and then immediately start from
the first task again, regardless of the clock frame. When it
is true, the task chain will finish all of its tasks and then
wait for the clock to tick to the next frame before resuming
the first task. This only makes sense for threaded tasks
chains; non-threaded task chains are automatically
synchronous.
timeslicePriority is False in the default mode, in which each
task runs exactly once each frame, round-robin style,
regardless of the task's priority value; or True to change the
meaning of priority so that certain tasks are run less often,
in proportion to their time used and to their priority value.
See AsyncTaskManager.setTimeslicePriority() for more.
"""
chain = self.mgr.makeTaskChain(chainName)
if numThreads is not None:
chain.setNumThreads(numThreads)
if tickClock is not None:
chain.setTickClock(tickClock)
if threadPriority is not None:
chain.setThreadPriority(threadPriority)
if frameBudget is not None:
chain.setFrameBudget(frameBudget)
if frameSync is not None:
chain.setFrameSync(frameSync)
if timeslicePriority is not None:
chain.setTimeslicePriority(timeslicePriority)
def hasTaskNamed(self, taskName):
"""Returns true if there is at least one task, active or
sleeping, with the indicated name. """
return bool(self.mgr.findTask(taskName))
def getTasksNamed(self, taskName):
"""Returns a list of all tasks, active or sleeping, with the
indicated name. """
return self.__makeTaskList(self.mgr.findTasks(taskName))
def getTasksMatching(self, taskPattern):
"""Returns a list of all tasks, active or sleeping, with a
name that matches the pattern, which can include standard
shell globbing characters like *, ?, and []. """
return self.__makeTaskList(self.mgr.findTasksMatching(GlobPattern(taskPattern)))
def getAllTasks(self):
"""Returns list of all tasks, active and sleeping, in
arbitrary order. """
return self.__makeTaskList(self.mgr.getTasks())
def getTasks(self):
"""Returns list of all active tasks in arbitrary order. """
return self.__makeTaskList(self.mgr.getActiveTasks())
def getDoLaters(self):
"""Returns list of all sleeping tasks in arbitrary order. """
return self.__makeTaskList(self.mgr.getSleepingTasks())
def __makeTaskList(self, taskCollection):
l = []
for i in range(taskCollection.getNumTasks()):
l.append(taskCollection.getTask(i))
return l
def doMethodLater(self, delayTime, funcOrTask, name, extraArgs = None,
sort = None, priority = None, taskChain = None,
uponDeath = None, appendTask = False, owner = None):
"""Adds a task to be performed at some time in the future.
This is identical to add(), except that the specified
delayTime is applied to the Task object first, which means
that the task will not begin executing until at least the
indicated delayTime (in seconds) has elapsed.
After delayTime has elapsed, the task will become active, and
will run in the soonest possible frame thereafter. If you
wish to specify a task that will run in the next frame, use a
delayTime of 0.
"""
if delayTime < 0:
assert self.notify.warning('doMethodLater: added task: %s with negative delay: %s' % (name, delayTime))
task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath)
task.setDelay(delayTime)
self.mgr.add(task)
return task
def add(self, funcOrTask, name = None, sort = None, extraArgs = None,
priority = None, uponDeath = None, appendTask = False,
taskChain = None, owner = None):
"""
Add a new task to the taskMgr. The task will begin executing
immediately, or next frame if its sort value has already
passed this frame.
The parameters are:
funcOrTask - either an existing Task object (not already added
to the task manager), or a callable function object. If this
is a function, a new Task object will be created and returned.
name - the name to assign to the Task. Required, unless you
are passing in a Task object that already has a name.
extraArgs - the list of arguments to pass to the task
function. If this is omitted, the list is just the task
object itself.
appendTask - a boolean flag. If this is true, then the task
object itself will be appended to the end of the extraArgs
list before calling the function.
sort - the sort value to assign the task. The default sort is
0. Within a particular task chain, it is guaranteed that the
tasks with a lower sort value will all run before tasks with a
higher sort value run.
priority - the priority at which to run the task. The default
priority is 0. Higher priority tasks are run sooner, and/or
more often. For historical purposes, if you specify a
priority without also specifying a sort, the priority value is
understood to actually be a sort value. (Previously, there
was no priority value, only a sort value, and it was called
"priority".)
uponDeath - a function to call when the task terminates,
either because it has run to completion, or because it has
been explicitly removed.
taskChain - the name of the task chain to assign the task to.
owner - an optional Python object that is declared as the
"owner" of this task for maintenance purposes. The owner must
have two methods: owner._addTask(self, task), which is called
when the task begins, and owner._clearTask(self, task), which
is called when the task terminates. This is all the owner
means.
The return value of add() is the new Task object that has been
added, or the original Task object that was passed in.
"""
task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath)
self.mgr.add(task)
return task
def __setupTask(self, funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath):
if isinstance(funcOrTask, AsyncTask):
task = funcOrTask
elif hasattr(funcOrTask, '__call__'):
task = PythonTask(funcOrTask)
else:
self.notify.error(
'add: Tried to add a task that was not a Task or a func')
if hasattr(task, 'setArgs'):
# It will only accept arguments if it's a PythonTask.
if extraArgs is None:
extraArgs = []
appendTask = True
task.setArgs(extraArgs, appendTask)
elif extraArgs is not None:
self.notify.error(
'Task %s does not accept arguments.' % (repr(task)))
if name is not None:
assert isinstance(name, types.StringTypes), 'Name must be a string type'
task.setName(name)
assert task.hasName()
# For historical reasons, if priority is specified but not
# sort, it really means sort.
if priority is not None and sort is None:
task.setSort(priority)
else:
if priority is not None:
task.setPriority(priority)
if sort is not None:
task.setSort(sort)
if taskChain is not None:
task.setTaskChain(taskChain)
if owner is not None:
task.setOwner(owner)
if uponDeath is not None:
task.setUponDeath(uponDeath)
return task
def remove(self, taskOrName):
"""Removes a task from the task manager. The task is stopped,
almost as if it had returned task.done. (But if the task is
currently executing, it will finish out its current frame
before being removed.) You may specify either an explicit
Task object, or the name of a task. If you specify a name,
all tasks with the indicated name are removed. Returns the
number of tasks removed. """
if isinstance(taskOrName, types.StringTypes):
tasks = self.mgr.findTasks(taskOrName)
return self.mgr.remove(tasks)
elif isinstance(taskOrName, AsyncTask):
return self.mgr.remove(taskOrName)
elif isinstance(taskOrName, types.ListType):
for task in taskOrName:
self.remove(task)
else:
self.notify.error('remove takes a string or a Task')
def removeTasksMatching(self, taskPattern):
"""Removes all tasks whose names match the pattern, which can
include standard shell globbing characters like *, ?, and [].
See also remove().
Returns the number of tasks removed.
"""
tasks = self.mgr.findTasksMatching(GlobPattern(taskPattern))
return self.mgr.remove(tasks)
def step(self):
"""Invokes the task manager for one frame, and then returns.
Normally, this executes each task exactly once, though task
chains that are in sub-threads or that have frame budgets
might execute their tasks differently. """
# Replace keyboard interrupt handler during task list processing
# so we catch the keyboard interrupt but don't handle it until
# after task list processing is complete.
self.fKeyboardInterrupt = 0
self.interruptCount = 0
signal.signal(signal.SIGINT, self.keyboardInterruptHandler)
startFrameTime = self.globalClock.getRealTime()
self.mgr.poll()
# This is the spot for an internal yield function
nextTaskTime = self.mgr.getNextWakeTime()
self.doYield(startFrameTime, nextTaskTime)
# Restore default interrupt handler
signal.signal(signal.SIGINT, signal.default_int_handler)
if self.fKeyboardInterrupt:
raise KeyboardInterrupt
def run(self):
"""Starts the task manager running. Does not return until an
exception is encountered (including KeyboardInterrupt). """
# Set the clock to have last frame's time in case we were
# Paused at the prompt for a long time
t = self.globalClock.getFrameTime()
timeDelta = t - self.globalClock.getRealTime()
self.globalClock.setRealTime(t)
messenger.send("resetClock", [timeDelta])
if self.resumeFunc != None:
self.resumeFunc()
if self.stepping:
self.step()
else:
self.running = True
while self.running:
try:
if len(self._frameProfileQueue):
numFrames, session, callback = self._frameProfileQueue.pop()
def _profileFunc(numFrames=numFrames):
self._doProfiledFrames(numFrames)
session.setFunc(_profileFunc)
session.run()
_profileFunc = None
if callback:
callback()
session.release()
else:
self.step()
except KeyboardInterrupt:
self.stop()
except SystemExit:
self.stop()
raise
except IOError, ioError:
code, message = self._unpackIOError(ioError)
# Since upgrading to Python 2.4.1, pausing the execution
# often gives this IOError during the sleep function:
# IOError: [Errno 4] Interrupted function call
# So, let's just handle that specific exception and stop.
# All other IOErrors should still get raised.
# Only problem: legit IOError 4s will be obfuscated.
if code == 4:
self.stop()
else:
raise
except Exception, e:
if self.extendedExceptions:
self.stop()
print_exc_plus()
else:
if (ExceptionVarDump.wantStackDumpLog and
ExceptionVarDump.dumpOnExceptionInit):
ExceptionVarDump._varDump__print(e)
raise
except:
if self.extendedExceptions:
self.stop()
print_exc_plus()
else:
raise
self.mgr.stopThreads()
def _unpackIOError(self, ioError):
# IOError unpack from http://www.python.org/doc/essays/stdexceptions/
# this needs to be in its own method, exceptions that occur inside
# a nested try block are not caught by the inner try block's except
try:
(code, message) = ioError
except:
code = 0
message = ioError
return code, message
def stop(self):
# Set a flag so we will stop before beginning next frame
self.running = False
def __tryReplaceTaskMethod(self, task, oldMethod, newFunction):
if not isinstance(task, PythonTask):
return 0
method = task.getFunction()
if (type(method) == types.MethodType):
function = method.im_func
else:
function = method
if (function == oldMethod):
newMethod = types.MethodType(newFunction,
method.im_self,
method.im_class)
task.setFunction(newMethod)
# Found a match
return 1
return 0
def replaceMethod(self, oldMethod, newFunction):
numFound = 0
for task in self.getAllTasks():
numFound += self.__tryReplaceTaskMethod(task, oldMethod, newFunction)
return numFound
def popupControls(self):
from direct.tkpanels import TaskManagerPanel
return TaskManagerPanel.TaskManagerPanel(self)
def getProfileSession(self, name=None):
# call to get a profile session that you can modify before passing to profileFrames()
if name is None:
name = 'taskMgrFrameProfile'
# Defer this import until we need it: some Python
# distributions don't provide the profile and pstats modules.
from direct.showbase.ProfileSession import ProfileSession
return ProfileSession(name)
def profileFrames(self, num=None, session=None, callback=None):
if num is None:
num = 1
if session is None:
session = self.getProfileSession()
# make sure the profile session doesn't get destroyed before we're done with it
session.acquire()
self._frameProfileQueue.push((num, session, callback))
def _doProfiledFrames(self, numFrames):
for i in xrange(numFrames):
result = self.step()
return result
def getProfileFrames(self):
return self._profileFrames.get()
def getProfileFramesSV(self):
return self._profileFrames
def setProfileFrames(self, profileFrames):
self._profileFrames.set(profileFrames)
if (not self._frameProfiler) and profileFrames:
# import here due to import dependencies
from direct.task.FrameProfiler import FrameProfiler
self._frameProfiler = FrameProfiler()
def getProfileTasks(self):
return self._profileTasks.get()
def getProfileTasksSV(self):
return self._profileTasks
def setProfileTasks(self, profileTasks):
self._profileTasks.set(profileTasks)
if (not self._taskProfiler) and profileTasks:
# import here due to import dependencies
from direct.task.TaskProfiler import TaskProfiler
self._taskProfiler = TaskProfiler()
def logTaskProfiles(self, name=None):
if self._taskProfiler:
self._taskProfiler.logProfiles(name)
def flushTaskProfiles(self, name=None):
if self._taskProfiler:
self._taskProfiler.flush(name)
def _setProfileTask(self, task):
if self._taskProfileInfo.session:
self._taskProfileInfo.session.release()
self._taskProfileInfo.session = None
self._taskProfileInfo = ScratchPad(
taskFunc = task.getFunction(),
taskArgs = task.getArgs(),
task = task,
profiled = False,
session = None,
)
# Temporarily replace the task's own function with our
# _profileTask method.
task.setFunction(self._profileTask)
task.setArgs([self._taskProfileInfo], True)
def _profileTask(self, profileInfo, task):
# This is called instead of the task function when we have
# decided to profile a task.
assert profileInfo.task == task
# don't profile the same task twice in a row
assert not profileInfo.profiled
# Restore the task's proper function for next time.
appendTask = False
taskArgs = profileInfo.taskArgs
if taskArgs and taskArgs[-1] == task:
appendTask = True
taskArgs = taskArgs[:-1]
task.setArgs(taskArgs, appendTask)
task.setFunction(profileInfo.taskFunc)
# Defer this import until we need it: some Python
# distributions don't provide the profile and pstats modules.
from direct.showbase.ProfileSession import ProfileSession
profileSession = ProfileSession('profiled-task-%s' % task.getName(),
Functor(profileInfo.taskFunc, *profileInfo.taskArgs))
ret = profileSession.run()
# set these values *after* profiling in case we're profiling the TaskProfiler
profileInfo.session = profileSession
profileInfo.profiled = True
return ret
def _hasProfiledDesignatedTask(self):
# have we run a profile of the designated task yet?
return self._taskProfileInfo.profiled
def _getLastTaskProfileSession(self):
return self._taskProfileInfo.session
def _getRandomTask(self):
# Figure out when the next frame is likely to expire, so we
# won't grab any tasks that are sleeping for a long time.
now = globalClock.getFrameTime()
avgFrameRate = globalClock.getAverageFrameRate()
if avgFrameRate < .00001:
avgFrameDur = 0.
else:
avgFrameDur = (1. / globalClock.getAverageFrameRate())
next = now + avgFrameDur
# Now grab a task at random, until we find one that we like.
tasks = self.mgr.getTasks()
i = random.randrange(tasks.getNumTasks())
task = tasks.getTask(i)
while not isinstance(task, PythonTask) or \
task.getWakeTime() > next:
tasks.removeTask(i)
i = random.randrange(tasks.getNumTasks())
task = tasks.getTask(i)
return task
def __repr__(self):
return str(self.mgr)
# In the event we want to do frame time managment, this is the
# function to replace or overload.
def doYield(self, frameStartTime, nextScheduledTaskTime):
pass
"""
def doYieldExample(self, frameStartTime, nextScheduledTaskTime):
minFinTime = frameStartTime + self.MaxEpochSpeed
if nextScheduledTaskTime > 0 and nextScheduledTaskTime < minFinTime:
print ' Adjusting Time'
minFinTime = nextScheduledTaskTime
delta = minFinTime - self.globalClock.getRealTime()
while(delta > 0.002):
print ' sleep %s'% (delta)
time.sleep(delta)
delta = minFinTime - self.globalClock.getRealTime()
"""
if __debug__:
# to catch memory leaks during the tests at the bottom of the file
def _startTrackingMemLeaks(self):
pass
def _stopTrackingMemLeaks(self):
pass
def _checkMemLeaks(self):
pass
def _runTests(self):
if __debug__:
tm = TaskManager()
tm.setClock(ClockObject())
tm.setupTaskChain("default", tickClock = True)
# check for memory leaks after every test
tm._startTrackingMemLeaks()
tm._checkMemLeaks()
# run-once task
l = []
def _testDone(task, l=l):
l.append(None)
return task.done
tm.add(_testDone, 'testDone')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 1
_testDone = None
tm._checkMemLeaks()
# remove by name
def _testRemoveByName(task):
return task.done
tm.add(_testRemoveByName, 'testRemoveByName')
assert tm.remove('testRemoveByName') == 1
assert tm.remove('testRemoveByName') == 0
_testRemoveByName = None
tm._checkMemLeaks()
# duplicate named tasks
def _testDupNamedTasks(task):
return task.done
tm.add(_testDupNamedTasks, 'testDupNamedTasks')
tm.add(_testDupNamedTasks, 'testDupNamedTasks')
assert tm.remove('testRemoveByName') == 0
_testDupNamedTasks = None
tm._checkMemLeaks()
# continued task
l = []
def _testCont(task, l = l):
l.append(None)
return task.cont
tm.add(_testCont, 'testCont')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.remove('testCont')
_testCont = None
tm._checkMemLeaks()
# continue until done task
l = []
def _testContDone(task, l = l):
l.append(None)
if len(l) >= 2:
return task.done
else:
return task.cont
tm.add(_testContDone, 'testContDone')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.step()
assert len(l) == 2
assert not tm.hasTaskNamed('testContDone')
_testContDone = None
tm._checkMemLeaks()
# hasTaskNamed
def _testHasTaskNamed(task):
return task.done
tm.add(_testHasTaskNamed, 'testHasTaskNamed')
assert tm.hasTaskNamed('testHasTaskNamed')
tm.step()
assert not tm.hasTaskNamed('testHasTaskNamed')
_testHasTaskNamed = None
tm._checkMemLeaks()
# task sort
l = []
def _testPri1(task, l = l):
l.append(1)
return task.cont
def _testPri2(task, l = l):
l.append(2)
return task.cont
tm.add(_testPri1, 'testPri1', sort = 1)
tm.add(_testPri2, 'testPri2', sort = 2)
tm.step()
assert len(l) == 2
assert l == [1, 2,]
tm.step()
assert len(l) == 4
assert l == [1, 2, 1, 2,]
tm.remove('testPri1')
tm.remove('testPri2')
_testPri1 = None
_testPri2 = None
tm._checkMemLeaks()
# task extraArgs
l = []
def _testExtraArgs(arg1, arg2, l=l):
l.extend([arg1, arg2,])
return done
tm.add(_testExtraArgs, 'testExtraArgs', extraArgs=[4,5])
tm.step()
assert len(l) == 2
assert l == [4, 5,]
_testExtraArgs = None
tm._checkMemLeaks()
# task appendTask
l = []
def _testAppendTask(arg1, arg2, task, l=l):
l.extend([arg1, arg2,])
return task.done
tm.add(_testAppendTask, '_testAppendTask', extraArgs=[4,5], appendTask=True)
tm.step()
assert len(l) == 2
assert l == [4, 5,]
_testAppendTask = None
tm._checkMemLeaks()
# task uponDeath
l = []
def _uponDeathFunc(task, l=l):
l.append(task.name)
def _testUponDeath(task):
return done
tm.add(_testUponDeath, 'testUponDeath', uponDeath=_uponDeathFunc)
tm.step()
assert len(l) == 1
assert l == ['testUponDeath']
_testUponDeath = None
_uponDeathFunc = None
tm._checkMemLeaks()
# task owner
class _TaskOwner:
def _addTask(self, task):
self.addedTaskName = task.name
def _clearTask(self, task):
self.clearedTaskName = task.name
to = _TaskOwner()
l = []
def _testOwner(task):
return done
tm.add(_testOwner, 'testOwner', owner=to)
tm.step()
assert getattr(to, 'addedTaskName', None) == 'testOwner'
assert getattr(to, 'clearedTaskName', None) == 'testOwner'
_testOwner = None
del to
_TaskOwner = None
tm._checkMemLeaks()
doLaterTests = [0,]
# doLater
l = []
def _testDoLater1(task, l=l):
l.append(1)
def _testDoLater2(task, l=l):
l.append(2)
def _monitorDoLater(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .03:
assert l == [1, 2,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLater1, 'testDoLater1')
tm.doMethodLater(.02, _testDoLater2, 'testDoLater2')
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLater, 'monitorDoLater', sort=10)
_testDoLater1 = None
_testDoLater2 = None
_monitorDoLater = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater sort
l = []
def _testDoLaterPri1(task, l=l):
l.append(1)
def _testDoLaterPri2(task, l=l):
l.append(2)
def _monitorDoLaterPri(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [1, 2,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterPri1, 'testDoLaterPri1', sort=1)
tm.doMethodLater(.01, _testDoLaterPri2, 'testDoLaterPri2', sort=2)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterPri, 'monitorDoLaterPri', sort=10)
_testDoLaterPri1 = None
_testDoLaterPri2 = None
_monitorDoLaterPri = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater extraArgs
l = []
def _testDoLaterExtraArgs(arg1, l=l):
l.append(arg1)
def _monitorDoLaterExtraArgs(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [3,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterExtraArgs, 'testDoLaterExtraArgs', extraArgs=[3,])
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterExtraArgs, 'monitorDoLaterExtraArgs', sort=10)
_testDoLaterExtraArgs = None
_monitorDoLaterExtraArgs = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater appendTask
l = []
def _testDoLaterAppendTask(arg1, task, l=l):
assert task.name == 'testDoLaterAppendTask'
l.append(arg1)
def _monitorDoLaterAppendTask(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [4,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterAppendTask, 'testDoLaterAppendTask',
extraArgs=[4,], appendTask=True)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterAppendTask, 'monitorDoLaterAppendTask', sort=10)
_testDoLaterAppendTask = None
_monitorDoLaterAppendTask = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater uponDeath
l = []
def _testUponDeathFunc(task, l=l):
assert task.name == 'testDoLaterUponDeath'
l.append(10)
def _testDoLaterUponDeath(arg1, l=l):
return done
def _monitorDoLaterUponDeath(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [10,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterUponDeath, 'testDoLaterUponDeath',
uponDeath=_testUponDeathFunc)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterUponDeath, 'monitorDoLaterUponDeath', sort=10)
_testUponDeathFunc = None
_testDoLaterUponDeath = None
_monitorDoLaterUponDeath = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater owner
class _DoLaterOwner:
def _addTask(self, task):
self.addedTaskName = task.name
def _clearTask(self, task):
self.clearedTaskName = task.name
doLaterOwner = _DoLaterOwner()
l = []
def _testDoLaterOwner(l=l):
pass
def _monitorDoLaterOwner(task, tm=tm, l=l, doLaterOwner=doLaterOwner,
doLaterTests=doLaterTests):
if task.time > .02:
assert getattr(doLaterOwner, 'addedTaskName', None) == 'testDoLaterOwner'
assert getattr(doLaterOwner, 'clearedTaskName', None) == 'testDoLaterOwner'
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterOwner, 'testDoLaterOwner',
owner=doLaterOwner)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterOwner, 'monitorDoLaterOwner', sort=10)
_testDoLaterOwner = None
_monitorDoLaterOwner = None
del doLaterOwner
_DoLaterOwner = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# run the doLater tests
while doLaterTests[0] > 0:
tm.step()
del doLaterTests
tm._checkMemLeaks()
# getTasks
def _testGetTasks(task):
return task.cont
# No doLaterProcessor in the new world.
assert len(tm.getTasks()) == 0
tm.add(_testGetTasks, 'testGetTasks1')
assert len(tm.getTasks()) == 1
assert (tm.getTasks()[0].name == 'testGetTasks1' or
tm.getTasks()[1].name == 'testGetTasks1')
tm.add(_testGetTasks, 'testGetTasks2')
tm.add(_testGetTasks, 'testGetTasks3')
assert len(tm.getTasks()) == 3
tm.remove('testGetTasks2')
assert len(tm.getTasks()) == 2
tm.remove('testGetTasks1')
tm.remove('testGetTasks3')
assert len(tm.getTasks()) == 0
_testGetTasks = None
tm._checkMemLeaks()
# getDoLaters
def _testGetDoLaters():
pass
assert len(tm.getDoLaters()) == 0
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater1')
assert len(tm.getDoLaters()) == 1
assert tm.getDoLaters()[0].name == 'testDoLater1'
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater2')
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater3')
assert len(tm.getDoLaters()) == 3
tm.remove('testDoLater2')
assert len(tm.getDoLaters()) == 2
tm.remove('testDoLater1')
tm.remove('testDoLater3')
assert len(tm.getDoLaters()) == 0
_testGetDoLaters = None
tm._checkMemLeaks()
# duplicate named doLaters removed via taskMgr.remove
def _testDupNameDoLaters():
pass
# the doLaterProcessor is always running
tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater')
tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater')
assert len(tm.getDoLaters()) == 2
tm.remove('testDupNameDoLater')
assert len(tm.getDoLaters()) == 0
_testDupNameDoLaters = None
tm._checkMemLeaks()
# duplicate named doLaters removed via remove()
def _testDupNameDoLatersRemove():
pass
# the doLaterProcessor is always running
dl1 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove')
dl2 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove')
assert len(tm.getDoLaters()) == 2
dl2.remove()
assert len(tm.getDoLaters()) == 1
dl1.remove()
assert len(tm.getDoLaters()) == 0
_testDupNameDoLatersRemove = None
# nameDict etc. isn't cleared out right away with task.remove()
tm._checkMemLeaks()
# getTasksNamed
def _testGetTasksNamed(task):
return task.cont
assert len(tm.getTasksNamed('testGetTasksNamed')) == 0
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 1
assert tm.getTasksNamed('testGetTasksNamed')[0].name == 'testGetTasksNamed'
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 3
tm.remove('testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 0
_testGetTasksNamed = None
tm._checkMemLeaks()
# removeTasksMatching
def _testRemoveTasksMatching(task):
return task.cont
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching')
assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 1
tm.removeTasksMatching('testRemoveTasksMatching')
assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 0
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1')
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2')
assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 1
assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 1
tm.removeTasksMatching('testRemoveTasksMatching*')
assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 0
assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 0
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1a')
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2a')
assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 1
assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 1
tm.removeTasksMatching('testRemoveTasksMatching?a')
assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 0
assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 0
_testRemoveTasksMatching = None
tm._checkMemLeaks()
# create Task object and add to mgr
l = []
def _testTaskObj(task, l=l):
l.append(None)
return task.cont
t = Task(_testTaskObj)
tm.add(t, 'testTaskObj')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.remove('testTaskObj')
tm.step()
assert len(l) == 2
_testTaskObj = None
tm._checkMemLeaks()
# remove Task via task.remove()
l = []
def _testTaskObjRemove(task, l=l):
l.append(None)
return task.cont
t = Task(_testTaskObjRemove)
tm.add(t, 'testTaskObjRemove')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
t.remove()
tm.step()
assert len(l) == 2
del t
_testTaskObjRemove = None
tm._checkMemLeaks()
"""
# this test fails, and it's not clear what the correct behavior should be.
# sort passed to Task.__init__ is always overridden by taskMgr.add()
# even if no sort is specified, and calling Task.setSort() has no
# effect on the taskMgr's behavior.
# set/get Task sort
l = []
def _testTaskObjSort(arg, task, l=l):
l.append(arg)
return task.cont
t1 = Task(_testTaskObjSort, sort=1)
t2 = Task(_testTaskObjSort, sort=2)
tm.add(t1, 'testTaskObjSort1', extraArgs=['a',], appendTask=True)
tm.add(t2, 'testTaskObjSort2', extraArgs=['b',], appendTask=True)
tm.step()
assert len(l) == 2
assert l == ['a', 'b']
assert t1.getSort() == 1
assert t2.getSort() == 2
t1.setSort(3)
assert t1.getSort() == 3
tm.step()
assert len(l) == 4
assert l == ['a', 'b', 'b', 'a',]
t1.remove()
t2.remove()
tm.step()
assert len(l) == 4
del t1
del t2
_testTaskObjSort = None
tm._checkMemLeaks()
"""
del l
tm.destroy()
del tm
if __debug__:
def checkLeak():
import sys
import gc
gc.enable()
from direct.showbase.DirectObject import DirectObject
class TestClass(DirectObject):
def doTask(self, task):
return task.done
obj = TestClass()
startRefCount = sys.getrefcount(obj)
print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj)
print '** addTask'
t = obj.addTask(obj.doTask, 'test')
print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj)
print 'task.getRefCount(): %s' % t.getRefCount()
print '** removeTask'
obj.removeTask('test')
print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj)
print 'task.getRefCount(): %s' % t.getRefCount()
print '** step'
taskMgr.step()
taskMgr.step()
taskMgr.step()
print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj)
print 'task.getRefCount(): %s' % t.getRefCount()
print '** task release'
t = None
print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj)
assert sys.getrefcount(obj) == startRefCount