Poodletooth-iLand/panda/direct/showbase/PythonUtil.py

4463 lines
141 KiB
Python
Raw Normal View History

2015-03-03 22:10:12 +00:00
"""Undocumented Module"""
__all__ = ['unique', 'indent', 'nonRepeatingRandomList',
'writeFsmTree', 'StackTrace', 'traceFunctionCall', 'traceParentCall',
'printThisCall', 'tron', 'trace', 'troff', 'getClassLineage', 'pdir',
'_pdir', '_is_variadic', '_has_keywordargs', '_varnames', '_getcode',
'Signature', 'doc', 'adjust', 'difference', 'intersection', 'union',
'sameElements', 'makeList', 'makeTuple', 'list2dict', 'invertDict',
'invertDictLossless', 'uniqueElements', 'disjoint', 'contains',
'replace', 'reduceAngle', 'fitSrcAngle2Dest', 'fitDestAngle2Src',
'closestDestAngle2', 'closestDestAngle', 'binaryRepr', 'profileFunc',
'profiled', 'startProfile', 'printProfile', 'getSetterName',
'getSetter', 'Functor', 'Stack', 'Queue', 'ParamObj',
'POD', 'bound', 'clamp', 'lerp', 'average', 'addListsByValue',
'boolEqual', 'lineupPos', 'formatElapsedSeconds', 'solveQuadratic',
'stackEntryInfo', 'lineInfo', 'callerInfo', 'lineTag',
'findPythonModule', 'describeException', 'mostDerivedLast',
'clampScalar', 'weightedChoice', 'randFloat', 'normalDistrib',
'weightedRand', 'randUint31', 'randInt32', 'randUint32',
'SerialNumGen', 'serialNum', 'uniqueName', 'Enum', 'Singleton',
'SingletonError', 'printListEnum', 'safeRepr',
'fastRepr', 'tagRepr', 'tagWithCaller', 'isDefaultValue', 'set_trace', 'pm',
'ScratchPad', 'Sync', 'RefCounter', 'itype', 'getNumberedTypedString',
'getNumberedTypedSortedString', 'getNumberedTypedSortedStringWithReferrers',
'getNumberedTypedSortedStringWithReferrersGen',
'printNumberedTyped', 'DelayedCall', 'DelayedFunctor',
'FrameDelayedCall', 'SubframeCall', 'ArgumentEater', 'ClassTree', 'getBase',
'HotkeyBreaker','logMethodCalls','GoldenRatio',
'GoldenRectangle', 'pivotScalar', 'rad90', 'rad180', 'rad270', 'rad360',
'nullGen', 'loopGen', 'makeFlywheelGen', 'flywheel', 'choice',
'printStack', 'printReverseStack', 'listToIndex2item', 'listToItem2index',
'pandaBreak','pandaTrace','formatTimeCompact','DestructiveScratchPad',
'deeptype','getProfileResultString','StdoutCapture','StdoutPassthrough',
'Averager', 'getRepository', 'formatTimeExact', 'startSuperLog', 'endSuperLog',
'typeName', 'safeTypeName', 'histogramDict', 'unescapeHtmlString', 'bpdb', ]
import types
import string
import re
import math
import operator
import inspect
import os
import sys
import random
import time
import gc
#if __debug__:
import traceback
import __builtin__
from StringIO import StringIO
import marshal
import ElementTree as ET
from HTMLParser import HTMLParser
import BpDb
import unicodedata
import bisect
__report_indent = 3
from direct.directutil import Verify
from panda3d.core import ConfigVariableBool
ScalarTypes = (types.FloatType, types.IntType, types.LongType)
"""
# with one integer positional arg, this uses about 4/5 of the memory of the Functor class below
def Functor(function, *args, **kArgs):
argsCopy = args[:]
def functor(*cArgs, **ckArgs):
kArgs.update(ckArgs)
return function(*(argsCopy + cArgs), **kArgs)
return functor
"""
class Functor:
def __init__(self, function, *args, **kargs):
assert callable(function), "function should be a callable obj"
self._function = function
self._args = args
self._kargs = kargs
if hasattr(self._function, '__name__'):
self.__name__ = self._function.__name__
else:
self.__name__ = str(itype(self._function))
if hasattr(self._function, '__doc__'):
self.__doc__ = self._function.__doc__
else:
self.__doc__ = self.__name__
def destroy(self):
del self._function
del self._args
del self._kargs
del self.__name__
del self.__doc__
def _do__call__(self, *args, **kargs):
_kargs = self._kargs.copy()
_kargs.update(kargs)
return self._function(*(self._args + args), **_kargs)
# this method is used in place of __call__ if we are recording creation stacks
def _exceptionLoggedCreationStack__call__(self, *args, **kargs):
try:
return self._do__call__(*args, **kargs)
except Exception, e:
print '-->Functor creation stack (%s): %s' % (
self.__name__, self.getCreationStackTraceCompactStr())
raise
__call__ = _do__call__
def __repr__(self):
s = 'Functor(%s' % self._function.__name__
for arg in self._args:
try:
argStr = repr(arg)
except:
argStr = 'bad repr: %s' % arg.__class__
s += ', %s' % argStr
for karg, value in self._kargs.items():
s += ', %s=%s' % (karg, repr(value))
s += ')'
return s
class Stack:
def __init__(self):
self.__list = []
def push(self, item):
self.__list.append(item)
def top(self):
# return the item on the top of the stack without popping it off
return self.__list[-1]
def pop(self):
return self.__list.pop()
def clear(self):
self.__list = []
def isEmpty(self):
return len(self.__list) == 0
def __len__(self):
return len(self.__list)
class Queue:
# FIFO queue
# interface is intentionally identical to Stack (LIFO)
def __init__(self):
self.__list = []
def push(self, item):
self.__list.append(item)
def top(self):
# return the next item at the front of the queue without popping it off
return self.__list[0]
def front(self):
return self.__list[0]
def back(self):
return self.__list[-1]
def pop(self):
return self.__list.pop(0)
def clear(self):
self.__list = []
def isEmpty(self):
return len(self.__list) == 0
def __len__(self):
return len(self.__list)
if __debug__ and __name__ == '__main__':
q = Queue()
assert q.isEmpty()
q.clear()
assert q.isEmpty()
q.push(10)
assert not q.isEmpty()
q.push(20)
assert not q.isEmpty()
assert len(q) == 2
assert q.front() == 10
assert q.back() == 20
assert q.top() == 10
assert q.top() == 10
assert q.pop() == 10
assert len(q) == 1
assert not q.isEmpty()
assert q.pop() == 20
assert len(q) == 0
assert q.isEmpty()
def unique(L1, L2):
"""Return a list containing all items in 'L1' that are not in 'L2'"""
L2 = dict([(k, None) for k in L2])
return [item for item in L1 if item not in L2]
def indent(stream, numIndents, str):
"""
Write str to stream with numIndents in front of it
"""
# To match emacs, instead of a tab character we will use 4 spaces
stream.write(' ' * numIndents + str)
def nonRepeatingRandomList(vals, max):
random.seed(time.time())
#first generate a set of random values
valueList=range(max)
finalVals=[]
for i in range(vals):
index=int(random.random()*len(valueList))
finalVals.append(valueList[index])
valueList.remove(valueList[index])
return finalVals
def writeFsmTree(instance, indent = 0):
if hasattr(instance, 'parentFSM'):
writeFsmTree(instance.parentFSM, indent-2)
elif hasattr(instance, 'fsm'):
name = ''
if hasattr(instance.fsm, 'state'):
name = instance.fsm.state.name
print "%s: %s"%(instance.fsm.name, name)
#if __debug__: #RAU accdg to Darren its's ok that StackTrace is not protected by __debug__
# DCR: if somebody ends up using StackTrace in production, either
# A) it will be OK because it hardly ever gets called, or
# B) it will be easy to track it down (grep for StackTrace)
class StackTrace:
def __init__(self, label="", start=0, limit=None):
"""
label is a string (or anything that be be a string)
that is printed as part of the trace back.
This is just to make it easier to tell what the
stack trace is referring to.
start is an integer number of stack frames back
from the most recent. (This is automatically
bumped up by one to skip the __init__ call
to the StackTrace).
limit is an integer number of stack frames
to record (or None for unlimited).
"""
self.label = label
if limit is not None:
self.trace = traceback.extract_stack(sys._getframe(1+start),
limit=limit)
else:
self.trace = traceback.extract_stack(sys._getframe(1+start))
def compact(self):
r = ''
comma = ','
for filename, lineNum, funcName, text in self.trace:
r += '%s.%s:%s%s' % (filename[:filename.rfind('.py')][filename.rfind('\\')+1:], funcName, lineNum, comma)
if len(r):
r = r[:-len(comma)]
return r
def reverseCompact(self):
r = ''
comma = ','
for filename, lineNum, funcName, text in self.trace:
r = '%s.%s:%s%s%s' % (filename[:filename.rfind('.py')][filename.rfind('\\')+1:], funcName, lineNum, comma, r)
if len(r):
r = r[:-len(comma)]
return r
def __str__(self):
r = "Debug stack trace of %s (back %s frames):\n"%(
self.label, len(self.trace),)
for i in traceback.format_list(self.trace):
r+=i
r+="***** NOTE: This is not a crash. This is a debug stack trace. *****"
return r
def printStack():
print StackTrace(start=1).compact()
return True
def printReverseStack():
print StackTrace(start=1).reverseCompact()
return True
def printVerboseStack():
print StackTrace(start=1)
return True
#-----------------------------------------------------------------------------
def traceFunctionCall(frame):
"""
return a string that shows the call frame with calling arguments.
e.g.
foo(x=234, y=135)
"""
f = frame
co = f.f_code
dict = f.f_locals
n = co.co_argcount
if co.co_flags & 4: n = n+1
if co.co_flags & 8: n = n+1
r=''
if 'self' in dict:
r = '%s.'%(dict['self'].__class__.__name__,)
r+="%s("%(f.f_code.co_name,)
comma=0 # formatting, whether we should type a comma.
for i in range(n):
name = co.co_varnames[i]
if name=='self':
continue
if comma:
r+=', '
else:
# ok, we skipped the first one, the rest get commas:
comma=1
r+=name
r+='='
if name in dict:
v=safeRepr(dict[name])
if len(v)>2000:
# r+="<too big for debug>"
r += (v[:2000] + "...")
else:
r+=v
else: r+="*** undefined ***"
return r+')'
def traceParentCall():
return traceFunctionCall(sys._getframe(2))
def printThisCall():
print traceFunctionCall(sys._getframe(1))
return 1 # to allow "assert printThisCall()"
if __debug__:
def lineage(obj, verbose=0, indent=0):
"""
return instance or class name in as a multiline string.
Usage: print lineage(foo)
(Based on getClassLineage())
"""
r=""
if type(obj) == types.ListType:
r+=(" "*indent)+"python list\n"
elif type(obj) == types.DictionaryType:
r+=(" "*indent)+"python dictionary\n"
elif type(obj) == types.ModuleType:
r+=(" "*indent)+str(obj)+"\n"
elif type(obj) == types.InstanceType:
r+=lineage(obj.__class__, verbose, indent)
elif type(obj) == types.ClassType:
r+=(" "*indent)
if verbose:
r+=obj.__module__+"."
r+=obj.__name__+"\n"
for c in obj.__bases__:
r+=lineage(c, verbose, indent+2)
return r
def tron():
sys.settrace(trace)
def trace(frame, event, arg):
if event == 'line':
pass
elif event == 'call':
print traceFunctionCall(sys._getframe(1))
elif event == 'return':
print "returning"
elif event == 'exception':
print "exception"
return trace
def troff():
sys.settrace(None)
#-----------------------------------------------------------------------------
def getClassLineage(obj):
"""
print object inheritance list
"""
if type(obj) == types.DictionaryType:
# Just a dictionary, return dictionary
return [obj]
elif (type(obj) == types.InstanceType):
# Instance, make a list with the instance and its class interitance
return [obj] + getClassLineage(obj.__class__)
elif ((type(obj) == types.ClassType) or
(type(obj) == types.TypeType)):
# Class or type, see what it derives from
lineage = [obj]
for c in obj.__bases__:
lineage = lineage + getClassLineage(c)
return lineage
# New FFI objects are types that are not defined.
# but they still act like classes
elif hasattr(obj, '__class__'):
# Instance, make a list with the instance and its class interitance
return [obj] + getClassLineage(obj.__class__)
else:
# Not what I'm looking for
return []
def pdir(obj, str = None, width = None,
fTruncate = 1, lineWidth = 75, wantPrivate = 0):
# Remove redundant class entries
uniqueLineage = []
for l in getClassLineage(obj):
if type(l) == types.ClassType:
if l in uniqueLineage:
break
uniqueLineage.append(l)
# Pretty print out directory info
uniqueLineage.reverse()
for obj in uniqueLineage:
_pdir(obj, str, width, fTruncate, lineWidth, wantPrivate)
print
def _pdir(obj, str = None, width = None,
fTruncate = 1, lineWidth = 75, wantPrivate = 0):
"""
Print out a formatted list of members and methods of an instance or class
"""
def printHeader(name):
name = ' ' + name + ' '
length = len(name)
if length < 70:
padBefore = int((70 - length)/2.0)
padAfter = max(0, 70 - length - padBefore)
header = '*' * padBefore + name + '*' * padAfter
print header
print
def printInstanceHeader(i, printHeader = printHeader):
printHeader(i.__class__.__name__ + ' INSTANCE INFO')
def printClassHeader(c, printHeader = printHeader):
printHeader(c.__name__ + ' CLASS INFO')
def printDictionaryHeader(d, printHeader = printHeader):
printHeader('DICTIONARY INFO')
# Print Header
if type(obj) == types.InstanceType:
printInstanceHeader(obj)
elif type(obj) == types.ClassType:
printClassHeader(obj)
elif type (obj) == types.DictionaryType:
printDictionaryHeader(obj)
# Get dict
if type(obj) == types.DictionaryType:
dict = obj
# FFI objects are builtin types, they have no __dict__
elif not hasattr(obj, '__dict__'):
dict = {}
else:
dict = obj.__dict__
# Adjust width
if width:
maxWidth = width
else:
maxWidth = 10
keyWidth = 0
aproposKeys = []
privateKeys = []
remainingKeys = []
for key in dict.keys():
if not width:
keyWidth = len(key)
if str:
if re.search(str, key, re.I):
aproposKeys.append(key)
if (not width) and (keyWidth > maxWidth):
maxWidth = keyWidth
else:
if key[:1] == '_':
if wantPrivate:
privateKeys.append(key)
if (not width) and (keyWidth > maxWidth):
maxWidth = keyWidth
else:
remainingKeys.append(key)
if (not width) and (keyWidth > maxWidth):
maxWidth = keyWidth
# Sort appropriate keys
if str:
aproposKeys.sort()
else:
privateKeys.sort()
remainingKeys.sort()
# Print out results
if wantPrivate:
keys = aproposKeys + privateKeys + remainingKeys
else:
keys = aproposKeys + remainingKeys
format = '%-' + repr(maxWidth) + 's'
for key in keys:
value = dict[key]
if callable(value):
strvalue = repr(Signature(value))
else:
strvalue = repr(value)
if fTruncate:
# Cut off line (keeping at least 1 char)
strvalue = strvalue[:max(1, lineWidth - maxWidth)]
print (format % key)[:maxWidth] + '\t' + strvalue
# Magic numbers: These are the bit masks in func_code.co_flags that
# reveal whether or not the function has a *arg or **kw argument.
_POS_LIST = 4
_KEY_DICT = 8
def _is_variadic(function):
return function.func_code.co_flags & _POS_LIST
def _has_keywordargs(function):
return function.func_code.co_flags & _KEY_DICT
def _varnames(function):
return function.func_code.co_varnames
def _getcode(f):
"""
_getcode(f)
This function returns the name and function object of a callable
object.
"""
def method_get(f):
return f.__name__, f.im_func
def function_get(f):
return f.__name__, f
def instance_get(f):
if hasattr(f, '__call__'):
method = f.__call__
if (type(method) == types.MethodType):
func = method.im_func
else:
func = method
return ("%s%s" % (f.__class__.__name__, '__call__'), func)
else:
s = ("Instance %s of class %s does not have a __call__ method" %
(f, f.__class__.__name__))
raise TypeError, s
def class_get(f):
if hasattr(f, '__init__'):
return f.__name__, f.__init__.im_func
else:
return f.__name__, lambda: None
codedict = { types.UnboundMethodType: method_get,
types.MethodType: method_get,
types.FunctionType: function_get,
types.InstanceType: instance_get,
types.ClassType: class_get,
}
try:
return codedict[type(f)](f)
except KeyError:
if hasattr(f, '__call__'): # eg, built-in functions and methods
# raise ValueError, "type %s not supported yet." % type(f)
return f.__name__, None
else:
raise TypeError, ("object %s of type %s is not callable." %
(f, type(f)))
class Signature:
def __init__(self, func):
self.type = type(func)
self.name, self.func = _getcode(func)
def ordinary_args(self):
n = self.func.func_code.co_argcount
return _varnames(self.func)[0:n]
def special_args(self):
n = self.func.func_code.co_argcount
x = {}
#
if _is_variadic(self.func):
x['positional'] = _varnames(self.func)[n]
if _has_keywordargs(self.func):
x['keyword'] = _varnames(self.func)[n+1]
elif _has_keywordargs(self.func):
x['keyword'] = _varnames(self.func)[n]
else:
pass
return x
def full_arglist(self):
base = list(self.ordinary_args())
x = self.special_args()
if 'positional' in x:
base.append(x['positional'])
if 'keyword' in x:
base.append(x['keyword'])
return base
def defaults(self):
defargs = self.func.func_defaults
args = self.ordinary_args()
mapping = {}
if defargs is not None:
for i in range(-1, -(len(defargs)+1), -1):
mapping[args[i]] = defargs[i]
else:
pass
return mapping
def __repr__(self):
if self.func:
defaults = self.defaults()
specials = self.special_args()
l = []
for arg in self.ordinary_args():
if arg in defaults:
l.append(arg + '=' + str(defaults[arg]))
else:
l.append(arg)
if 'positional' in specials:
l.append('*' + specials['positional'])
if 'keyword' in specials:
l.append('**' + specials['keyword'])
return "%s(%s)" % (self.name, ', '.join(l))
else:
return "%s(?)" % self.name
def doc(obj):
if (isinstance(obj, types.MethodType)) or \
(isinstance(obj, types.FunctionType)):
print obj.__doc__
def adjust(command = None, dim = 1, parent = None, **kw):
"""
adjust(command = None, parent = None, **kw)
Popup and entry scale to adjust a parameter
Accepts any Slider keyword argument. Typical arguments include:
command: The one argument command to execute
min: The min value of the slider
max: The max value of the slider
resolution: The resolution of the slider
text: The label on the slider
These values can be accessed and/or changed after the fact
>>> vg = adjust()
>>> vg['min']
0.0
>>> vg['min'] = 10.0
>>> vg['min']
10.0
"""
# Make sure we enable Tk
from direct.tkwidgets import Valuator
# Set command if specified
if command:
kw['command'] = lambda x: apply(command, x)
if parent is None:
kw['title'] = command.__name__
kw['dim'] = dim
# Create toplevel if needed
if not parent:
vg = apply(Valuator.ValuatorGroupPanel, (parent,), kw)
else:
vg = apply(Valuator.ValuatorGroup, (parent,), kw)
vg.pack(expand = 1, fill = 'x')
return vg
def difference(a, b):
"""
difference(list, list):
"""
if not a: return b
if not b: return a
d = []
for i in a:
if (i not in b) and (i not in d):
d.append(i)
for i in b:
if (i not in a) and (i not in d):
d.append(i)
return d
def intersection(a, b):
"""
intersection(list, list):
"""
if not a: return []
if not b: return []
d = []
for i in a:
if (i in b) and (i not in d):
d.append(i)
for i in b:
if (i in a) and (i not in d):
d.append(i)
return d
def union(a, b):
"""
union(list, list):
"""
# Copy a
c = a[:]
for i in b:
if (i not in c):
c.append(i)
return c
def sameElements(a, b):
if len(a) != len(b):
return 0
for elem in a:
if elem not in b:
return 0
for elem in b:
if elem not in a:
return 0
return 1
def makeList(x):
"""returns x, converted to a list"""
if type(x) is types.ListType:
return x
elif type(x) is types.TupleType:
return list(x)
else:
return [x,]
def makeTuple(x):
"""returns x, converted to a tuple"""
if type(x) is types.ListType:
return tuple(x)
elif type(x) is types.TupleType:
return x
else:
return (x,)
def list2dict(L, value=None):
"""creates dict using elements of list, all assigned to same value"""
return dict([(k, value) for k in L])
def listToIndex2item(L):
"""converts list to dict of list index->list item"""
d = {}
for i, item in enumerate(L):
d[i] = item
return d
assert listToIndex2item(['a','b']) == {0: 'a', 1: 'b',}
def listToItem2index(L):
"""converts list to dict of list item->list index
This is lossy if there are duplicate list items"""
d = {}
for i, item in enumerate(L):
d[item] = i
return d
assert listToItem2index(['a','b']) == {'a': 0, 'b': 1,}
def invertDict(D, lossy=False):
"""creates a dictionary by 'inverting' D; keys are placed in the new
dictionary under their corresponding value in the old dictionary.
It is an error if D contains any duplicate values.
>>> old = {'key1':1, 'key2':2}
>>> invertDict(old)
{1: 'key1', 2: 'key2'}
"""
n = {}
for key, value in D.items():
if not lossy and value in n:
raise 'duplicate key in invertDict: %s' % value
n[value] = key
return n
def invertDictLossless(D):
"""similar to invertDict, but values of new dict are lists of keys from
old dict. No information is lost.
>>> old = {'key1':1, 'key2':2, 'keyA':2}
>>> invertDictLossless(old)
{1: ['key1'], 2: ['key2', 'keyA']}
"""
n = {}
for key, value in D.items():
n.setdefault(value, [])
n[value].append(key)
return n
def uniqueElements(L):
"""are all elements of list unique?"""
return len(L) == len(list2dict(L))
def disjoint(L1, L2):
"""returns non-zero if L1 and L2 have no common elements"""
used = dict([(k, None) for k in L1])
for k in L2:
if k in used:
return 0
return 1
def contains(whole, sub):
"""
Return 1 if whole contains sub, 0 otherwise
"""
if (whole == sub):
return 1
for elem in sub:
# The first item you find not in whole, return 0
if elem not in whole:
return 0
# If you got here, whole must contain sub
return 1
def replace(list, old, new, all=0):
"""
replace 'old' with 'new' in 'list'
if all == 0, replace first occurrence
otherwise replace all occurrences
returns the number of items replaced
"""
if old not in list:
return 0
if not all:
i = list.index(old)
list[i] = new
return 1
else:
numReplaced = 0
for i in xrange(len(list)):
if list[i] == old:
numReplaced += 1
list[i] = new
return numReplaced
rad90 = math.pi / 2.
rad180 = math.pi
rad270 = 1.5 * math.pi
rad360 = 2. * math.pi
def reduceAngle(deg):
"""
Reduces an angle (in degrees) to a value in [-180..180)
"""
return (((deg + 180.) % 360.) - 180.)
def fitSrcAngle2Dest(src, dest):
"""
given a src and destination angle, returns an equivalent src angle
that is within [-180..180) of dest
examples:
fitSrcAngle2Dest(30, 60) == 30
fitSrcAngle2Dest(60, 30) == 60
fitSrcAngle2Dest(0, 180) == 0
fitSrcAngle2Dest(-1, 180) == 359
fitSrcAngle2Dest(-180, 180) == 180
"""
return dest + reduceAngle(src - dest)
def fitDestAngle2Src(src, dest):
"""
given a src and destination angle, returns an equivalent dest angle
that is within [-180..180) of src
examples:
fitDestAngle2Src(30, 60) == 60
fitDestAngle2Src(60, 30) == 30
fitDestAngle2Src(0, 180) == -180
fitDestAngle2Src(1, 180) == 180
"""
return src + (reduceAngle(dest - src))
def closestDestAngle2(src, dest):
# The function above didn't seem to do what I wanted. So I hacked
# this one together. I can't really say I understand it. It's more
# from impirical observation... GRW
diff = src - dest
if diff > 180:
# if the difference is greater that 180 it's shorter to go the other way
return dest - 360
elif diff < -180:
# or perhaps the OTHER other way...
return dest + 360
else:
# otherwise just go to the original destination
return dest
def closestDestAngle(src, dest):
# The function above didn't seem to do what I wanted. So I hacked
# this one together. I can't really say I understand it. It's more
# from impirical observation... GRW
diff = src - dest
if diff > 180:
# if the difference is greater that 180 it's shorter to go the other way
return src - (diff - 360)
elif diff < -180:
# or perhaps the OTHER other way...
return src - (360 + diff)
else:
# otherwise just go to the original destination
return dest
def binaryRepr(number, max_length = 32):
# This will only work reliably for relatively small numbers.
# Increase the value of max_length if you think you're going
# to use long integers
assert number < 2L << max_length
shifts = map (operator.rshift, max_length * [number], \
range (max_length - 1, -1, -1))
digits = map (operator.mod, shifts, max_length * [2])
if not digits.count (1): return 0
digits = digits [digits.index (1):]
return ''.join([repr(digit) for digit in digits])
class StdoutCapture:
# redirects stdout to a string
def __init__(self):
self._oldStdout = sys.stdout
sys.stdout = self
self._string = ''
def destroy(self):
sys.stdout = self._oldStdout
del self._oldStdout
def getString(self):
return self._string
# internal
def write(self, string):
self._string = ''.join([self._string, string])
class StdoutPassthrough(StdoutCapture):
# like StdoutCapture but also allows output to go through to the OS as normal
# internal
def write(self, string):
self._string = ''.join([self._string, string])
self._oldStdout.write(string)
# constant profile defaults
PyUtilProfileDefaultFilename = 'profiledata'
PyUtilProfileDefaultLines = 80
PyUtilProfileDefaultSorts = ['cumulative', 'time', 'calls']
_ProfileResultStr = ''
def getProfileResultString():
# if you called profile with 'log' not set to True,
# you can call this function to get the results as
# a string
global _ProfileResultStr
return _ProfileResultStr
def profileFunc(callback, name, terse, log=True):
global _ProfileResultStr
if 'globalProfileFunc' in __builtin__.__dict__:
# rats. Python profiler is not re-entrant...
base.notify.warning(
'PythonUtil.profileStart(%s): aborted, already profiling %s'
#'\nStack Trace:\n%s'
% (name, __builtin__.globalProfileFunc,
#StackTrace()
))
return
__builtin__.globalProfileFunc = callback
__builtin__.globalProfileResult = [None]
prefix = '***** START PROFILE: %s *****' % name
if log:
print prefix
startProfile(cmd='globalProfileResult[0]=globalProfileFunc()', callInfo=(not terse), silent=not log)
suffix = '***** END PROFILE: %s *****' % name
if log:
print suffix
else:
_ProfileResultStr = '%s\n%s\n%s' % (prefix, _ProfileResultStr, suffix)
result = globalProfileResult[0]
del __builtin__.__dict__['globalProfileFunc']
del __builtin__.__dict__['globalProfileResult']
return result
def profiled(category=None, terse=False):
""" decorator for profiling functions
turn categories on and off via "want-profile-categoryName 1"
e.g.
@profiled('particles')
def loadParticles():
...
want-profile-particles 1
"""
assert type(category) in (types.StringType, types.NoneType), "must provide a category name for @profiled"
# allow profiling in published versions
"""
try:
null = not __dev__
except:
null = not __debug__
if null:
# if we're not in __dev__, just return the function itself. This
# results in zero runtime overhead, since decorators are evaluated
# at module-load.
def nullDecorator(f):
return f
return nullDecorator
"""
def profileDecorator(f):
def _profiled(*args, **kArgs):
name = '(%s) %s from %s' % (category, f.func_name, f.__module__)
# showbase might not be loaded yet, so don't use
# base.config. Instead, query the ConfigVariableBool.
if (category is None) or ConfigVariableBool('want-profile-%s' % category, 0).getValue():
return profileFunc(Functor(f, *args, **kArgs), name, terse)
else:
return f(*args, **kArgs)
_profiled.__doc__ = f.__doc__
return _profiled
return profileDecorator
# intercept profile-related file operations to avoid disk access
movedOpenFuncs = []
movedDumpFuncs = []
movedLoadFuncs = []
profileFilenames = set()
profileFilenameList = Stack()
profileFilename2file = {}
profileFilename2marshalData = {}
def _profileOpen(filename, *args, **kArgs):
# this is a replacement for the file open() builtin function
# for use during profiling, to intercept the file open
# operation used by the Python profiler and profile stats
# systems
if filename in profileFilenames:
# if this is a file related to profiling, create an
# in-RAM file object
if filename not in profileFilename2file:
file = StringIO()
file._profFilename = filename
profileFilename2file[filename] = file
else:
file = profileFilename2file[filename]
else:
file = movedOpenFuncs[-1](filename, *args, **kArgs)
return file
def _profileMarshalDump(data, file):
# marshal.dump doesn't work with StringIO objects
# simulate it
if isinstance(file, StringIO) and hasattr(file, '_profFilename'):
if file._profFilename in profileFilenames:
profileFilename2marshalData[file._profFilename] = data
return None
return movedDumpFuncs[-1](data, file)
def _profileMarshalLoad(file):
# marshal.load doesn't work with StringIO objects
# simulate it
if isinstance(file, StringIO) and hasattr(file, '_profFilename'):
if file._profFilename in profileFilenames:
return profileFilename2marshalData[file._profFilename]
return movedLoadFuncs[-1](file)
def _installProfileCustomFuncs(filename):
assert filename not in profileFilenames
profileFilenames.add(filename)
profileFilenameList.push(filename)
movedOpenFuncs.append(__builtin__.open)
__builtin__.open = _profileOpen
movedDumpFuncs.append(marshal.dump)
marshal.dump = _profileMarshalDump
movedLoadFuncs.append(marshal.load)
marshal.load = _profileMarshalLoad
def _getProfileResultFileInfo(filename):
return (profileFilename2file.get(filename, None),
profileFilename2marshalData.get(filename, None))
def _setProfileResultsFileInfo(filename, info):
f, m = info
if f:
profileFilename2file[filename] = f
if m:
profileFilename2marshalData[filename] = m
def _clearProfileResultFileInfo(filename):
profileFilename2file.pop(filename, None)
profileFilename2marshalData.pop(filename, None)
def _removeProfileCustomFuncs(filename):
assert profileFilenameList.top() == filename
marshal.load = movedLoadFuncs.pop()
marshal.dump = movedDumpFuncs.pop()
__builtin__.open = movedOpenFuncs.pop()
profileFilenames.remove(filename)
profileFilenameList.pop()
profileFilename2file.pop(filename, None)
# don't let marshalled data pile up
profileFilename2marshalData.pop(filename, None)
# call this from the prompt, and break back out to the prompt
# to stop profiling
#
# OR to do inline profiling, you must make a globally-visible
# function to be profiled, i.e. to profile 'self.load()', do
# something like this:
#
# def func(self=self):
# self.load()
# import __builtin__
# __builtin__.func = func
# PythonUtil.startProfile(cmd='func()', filename='profileData')
# del __builtin__.func
#
def _profileWithoutGarbageLeak(cmd, filename):
# The profile module isn't necessarily installed on every Python
# installation, so we import it here, instead of in the module
# scope.
import profile
# this is necessary because the profile module creates a memory leak
Profile = profile.Profile
statement = cmd
sort = -1
retVal = None
#### COPIED FROM profile.run ####
prof = Profile()
try:
prof = prof.run(statement)
except SystemExit:
pass
if filename is not None:
prof.dump_stats(filename)
else:
#return prof.print_stats(sort) #DCR
retVal = prof.print_stats(sort) #DCR
#################################
# eliminate the garbage leak
del prof.dispatcher
return retVal
def startProfile(filename=PyUtilProfileDefaultFilename,
lines=PyUtilProfileDefaultLines,
sorts=PyUtilProfileDefaultSorts,
silent=0,
callInfo=1,
useDisk=False,
cmd='run()'):
# uniquify the filename to allow multiple processes to profile simultaneously
filename = '%s.%s%s' % (filename, randUint31(), randUint31())
if not useDisk:
# use a RAM file
_installProfileCustomFuncs(filename)
_profileWithoutGarbageLeak(cmd, filename)
if silent:
extractProfile(filename, lines, sorts, callInfo)
else:
printProfile(filename, lines, sorts, callInfo)
if not useDisk:
# discard the RAM file
_removeProfileCustomFuncs(filename)
else:
os.remove(filename)
# call these to see the results again, as a string or in the log
def printProfile(filename=PyUtilProfileDefaultFilename,
lines=PyUtilProfileDefaultLines,
sorts=PyUtilProfileDefaultSorts,
callInfo=1):
import pstats
s = pstats.Stats(filename)
s.strip_dirs()
for sort in sorts:
s.sort_stats(sort)
s.print_stats(lines)
if callInfo:
s.print_callees(lines)
s.print_callers(lines)
# same args as printProfile
def extractProfile(*args, **kArgs):
global _ProfileResultStr
# capture print output
sc = StdoutCapture()
# print the profile output, redirected to the result string
printProfile(*args, **kArgs)
# make a copy of the print output
_ProfileResultStr = sc.getString()
# restore stdout to what it was before
sc.destroy()
def getSetterName(valueName, prefix='set'):
# getSetterName('color') -> 'setColor'
# getSetterName('color', 'get') -> 'getColor'
return '%s%s%s' % (prefix, valueName[0].upper(), valueName[1:])
def getSetter(targetObj, valueName, prefix='set'):
# getSetter(smiley, 'pos') -> smiley.setPos
return getattr(targetObj, getSetterName(valueName, prefix))
def mostDerivedLast(classList):
"""pass in list of classes. sorts list in-place, with derived classes
appearing after their bases"""
class ClassSortKey(object):
__slots__ = 'classobj',
def __init__(self, classobj):
self.classobj = classobj
def __lt__(self, other):
return issubclass(other.classobj, self.classobj)
classList.sort(key=ClassSortKey)
"""
ParamObj/ParamSet
=================
These two classes support you in the definition of a formal set of
parameters for an object type. The parameters may be safely queried/set on
an object instance at any time, and the object will react to newly-set
values immediately.
ParamSet & ParamObj also provide a mechanism for atomically setting
multiple parameter values before allowing the object to react to any of the
new values--useful when two or more parameters are interdependent and there
is risk of setting an illegal combination in the process of applying a new
set of values.
To make use of these classes, derive your object from ParamObj. Then define
a 'ParamSet' subclass that derives from the parent class' 'ParamSet' class,
and define the object's parameters within its ParamSet class. (see examples
below)
The ParamObj base class provides 'get' and 'set' functions for each
parameter if they are not defined. These default implementations
respectively set the parameter value directly on the object, and expect the
value to be available in that location for retrieval.
Classes that derive from ParamObj can optionally declare a 'get' and 'set'
function for each parameter. The setter should simply store the value in a
location where the getter can find it; it should not do any further
processing based on the new parameter value. Further processing should be
implemented in an 'apply' function. The applier function is optional, and
there is no default implementation.
NOTE: the previous value of a parameter is available inside an apply
function as 'self.getPriorValue()'
The ParamSet class declaration lists the parameters and defines a default
value for each. ParamSet instances represent a complete set of parameter
values. A ParamSet instance created with no constructor arguments will
contain the default values for each parameter. The defaults may be
overriden by passing keyword arguments to the ParamSet's constructor. If a
ParamObj instance is passed to the constructor, the ParamSet will extract
the object's current parameter values.
ParamSet.applyTo(obj) sets all of its parameter values on 'obj'.
SETTERS AND APPLIERS
====================
Under normal conditions, a call to a setter function, i.e.
cam.setFov(90)
will actually result in the following calls being made:
cam.setFov(90)
cam.applyFov()
Calls to several setter functions, i.e.
cam.setFov(90)
cam.setViewType('cutscene')
will result in this call sequence:
cam.setFov(90)
cam.applyFov()
cam.setViewType('cutscene')
cam.applyViewType()
Suppose that you desire the view type to already be set to 'cutscene' at
the time when applyFov() is called. You could reverse the order of the set
calls, but suppose that you also want the fov to be set properly at the
time when applyViewType() is called.
In this case, you can 'lock' the params, i.e.
cam.lockParams()
cam.setFov(90)
cam.setViewType('cutscene')
cam.unlockParams()
This will result in the following call sequence:
cam.setFov(90)
cam.setViewType('cutscene')
cam.applyFov()
cam.applyViewType()
NOTE: Currently the order of the apply calls following an unlock is not
guaranteed.
EXAMPLE CLASSES
===============
Here is an example of a class that uses ParamSet/ParamObj to manage its
parameters:
class Camera(ParamObj):
class ParamSet(ParamObj.ParamSet):
Params = {
'viewType': 'normal',
'fov': 60,
}
...
def getViewType(self):
return self.viewType
def setViewType(self, viewType):
self.viewType = viewType
def applyViewType(self):
if self.viewType == 'normal':
...
def getFov(self):
return self.fov
def setFov(self, fov):
self.fov = fov
def applyFov(self):
base.camera.setFov(self.fov)
...
EXAMPLE USAGE
=============
cam = Camera()
...
# set up for the cutscene
savedSettings = cam.ParamSet(cam)
cam.setViewType('closeup')
cam.setFov(90)
...
# cutscene is over, set the camera back
savedSettings.applyTo(cam)
del savedSettings
"""
class ParamObj:
# abstract base for classes that want to support a formal parameter
# set whose values may be queried, changed, 'bulk' changed (defer reaction
# to changes until multiple changes have been performed), and
# extracted/stored/applied all at once (see documentation above)
# ParamSet subclass: container of parameter values. Derived class must
# derive a new ParamSet class if they wish to define new params. See
# documentation above.
class ParamSet:
Params = {
# base class does not define any parameters, but they would
# appear here as 'name': defaultValue,
#
# WARNING: default values of mutable types that do not copy by
# value (dicts, lists etc.) will be shared by all class instances
# if default value is callable, it will be called to get actual
# default value
#
# for example:
#
# class MapArea(ParamObj):
# class ParamSet(ParamObj.ParamSet):
# Params = {
# 'spawnIndices': Functor(list, [1,5,22]),
# }
#
}
def __init__(self, *args, **kwArgs):
self.__class__._compileDefaultParams()
if len(args) == 1 and len(kwArgs) == 0:
# extract our params from an existing ParamObj instance
obj = args[0]
self.paramVals = {}
for param in self.getParams():
self.paramVals[param] = getSetter(obj, param, 'get')()
else:
assert len(args) == 0
if __debug__:
for arg in kwArgs.keys():
assert arg in self.getParams()
self.paramVals = dict(kwArgs)
def getValue(self, param):
if param in self.paramVals:
return self.paramVals[param]
return self._Params[param]
def applyTo(self, obj):
# Apply our entire set of params to a ParamObj
obj.lockParams()
for param in self.getParams():
getSetter(obj, param)(self.getValue(param))
obj.unlockParams()
def extractFrom(self, obj):
# Extract our entire set of params from a ParamObj
obj.lockParams()
for param in self.getParams():
self.paramVals[param] = getSetter(obj, param, 'get')()
obj.unlockParams()
@classmethod
def getParams(cls):
# returns safely-mutable list of param names
cls._compileDefaultParams()
return cls._Params.keys()
@classmethod
def getDefaultValue(cls, param):
cls._compileDefaultParams()
dv = cls._Params[param]
if hasattr(dv, '__call__'):
dv = dv()
return dv
@classmethod
def _compileDefaultParams(cls):
if '_Params' in cls.__dict__:
# we've already compiled the defaults for this class
return
bases = list(cls.__bases__)
if object in bases:
bases.remove(object)
# bring less-derived classes to the front
mostDerivedLast(bases)
cls._Params = {}
for c in (bases + [cls]):
# make sure this base has its dict of param defaults
c._compileDefaultParams()
if 'Params' in c.__dict__:
# apply this class' default param values to our dict
cls._Params.update(c.Params)
def __repr__(self):
argStr = ''
for param in self.getParams():
argStr += '%s=%s,' % (param,
repr(self.getValue(param)))
return '%s.%s(%s)' % (
self.__class__.__module__, self.__class__.__name__, argStr)
# END PARAMSET SUBCLASS
def __init__(self, *args, **kwArgs):
assert issubclass(self.ParamSet, ParamObj.ParamSet)
# If you pass in a ParamSet obj, its values will be applied to this
# object in the constructor.
params = None
if len(args) == 1 and len(kwArgs) == 0:
# if there's one argument, assume that it's a ParamSet
params = args[0]
elif len(kwArgs) > 0:
assert len(args) == 0
# if we've got keyword arguments, make a ParamSet out of them
params = self.ParamSet(**kwArgs)
self._paramLockRefCount = 0
# these hold the current value of parameters while they are being set to
# a new value, to support getPriorValue()
self._curParamStack = []
self._priorValuesStack = []
# insert stub funcs for param setters, to handle locked params
for param in self.ParamSet.getParams():
# set the default value on the object
setattr(self, param, self.ParamSet.getDefaultValue(param))
setterName = getSetterName(param)
getterName = getSetterName(param, 'get')
# is there a setter defined?
if not hasattr(self, setterName):
# no; provide the default
def defaultSetter(self, value, param=param):
#print '%s=%s for %s' % (param, value, id(self))
setattr(self, param, value)
self.__class__.__dict__[setterName] = defaultSetter
# is there a getter defined?
if not hasattr(self, getterName):
# no; provide the default. If there is no value set, return
# the default
def defaultGetter(self, param=param,
default=self.ParamSet.getDefaultValue(param)):
return getattr(self, param, default)
self.__class__.__dict__[getterName] = defaultGetter
# have we already installed a setter stub?
origSetterName = '%s_ORIG' % (setterName,)
if not hasattr(self, origSetterName):
# move the original setter aside
origSetterFunc = getattr(self.__class__, setterName)
setattr(self.__class__, origSetterName, origSetterFunc)
"""
# if the setter is a direct member of this instance, move the setter
# aside
if setterName in self.__dict__:
self.__dict__[setterName + '_MOVED'] = self.__dict__[setterName]
setterFunc = self.__dict__[setterName]
"""
# install a setter stub that will a) call the real setter and
# then the applier, or b) call the setter and queue the
# applier, depending on whether our params are locked
"""
setattr(self, setterName, types.MethodType(
Functor(setterStub, param, setterFunc), self, self.__class__))
"""
def setterStub(self, value, param=param, origSetterName=origSetterName):
# should we apply the value now or should we wait?
# if this obj's params are locked, we track which values have
# been set, and on unlock, we'll call the applyers for those
# values
if self._paramLockRefCount > 0:
priorValues = self._priorValuesStack[-1]
if param not in priorValues:
try:
priorValue = getSetter(self, param, 'get')()
except:
priorValue = None
priorValues[param] = priorValue
self._paramsSet[param] = None
getattr(self, origSetterName)(value)
else:
# prepare for call to getPriorValue
try:
priorValue = getSetter(self, param, 'get')()
except:
priorValue = None
self._priorValuesStack.append({
param: priorValue,
})
getattr(self, origSetterName)(value)
# call the applier, if there is one
applier = getattr(self, getSetterName(param, 'apply'), None)
if applier is not None:
self._curParamStack.append(param)
applier()
self._curParamStack.pop()
self._priorValuesStack.pop()
if hasattr(self, 'handleParamChange'):
self.handleParamChange((param,))
setattr(self.__class__, setterName, setterStub)
if params is not None:
params.applyTo(self)
def destroy(self):
"""
for param in self.ParamSet.getParams():
setterName = getSetterName(param)
self.__dict__[setterName].destroy()
del self.__dict__[setterName]
"""
pass
def setDefaultParams(self):
# set all the default parameters on ourself
self.ParamSet().applyTo(self)
def getCurrentParams(self):
params = self.ParamSet()
params.extractFrom(self)
return params
def lockParams(self):
self._paramLockRefCount += 1
if self._paramLockRefCount == 1:
self._handleLockParams()
def unlockParams(self):
if self._paramLockRefCount > 0:
self._paramLockRefCount -= 1
if self._paramLockRefCount == 0:
self._handleUnlockParams()
def _handleLockParams(self):
# this will store the names of the parameters that are modified
self._paramsSet = {}
# this will store the values of modified params (from prior to
# the lock).
self._priorValuesStack.append({})
def _handleUnlockParams(self):
for param in self._paramsSet:
# call the applier, if there is one
applier = getattr(self, getSetterName(param, 'apply'), None)
if applier is not None:
self._curParamStack.append(param)
applier()
self._curParamStack.pop()
self._priorValuesStack.pop()
if hasattr(self, 'handleParamChange'):
self.handleParamChange(tuple(self._paramsSet.keys()))
del self._paramsSet
def paramsLocked(self):
return self._paramLockRefCount > 0
def getPriorValue(self):
# call this within an apply function to find out what the prior value
# of the param was
return self._priorValuesStack[-1][self._curParamStack[-1]]
def __repr__(self):
argStr = ''
for param in self.ParamSet.getParams():
try:
value = getSetter(self, param, 'get')()
except:
value = '<unknown>'
argStr += '%s=%s,' % (param, repr(value))
return '%s(%s)' % (self.__class__.__name__, argStr)
if __debug__ and __name__ == '__main__':
class ParamObjTest(ParamObj):
class ParamSet(ParamObj.ParamSet):
Params = {
'num': 0,
}
def applyNum(self):
self.priorValue = self.getPriorValue()
pto = ParamObjTest()
assert pto.getNum() == 0
pto.setNum(1)
assert pto.priorValue == 0
assert pto.getNum() == 1
pto.lockParams()
pto.setNum(2)
# make sure applyNum is not called until we call unlockParams
assert pto.priorValue == 0
assert pto.getNum() == 2
pto.unlockParams()
assert pto.priorValue == 1
assert pto.getNum() == 2
"""
POD (Plain Ol' Data)
Like ParamObj/ParamSet, but without lock/unlock/getPriorValue and without
appliers. Similar to a C++ struct, but with auto-generated setters and
getters.
Use POD when you want the generated getters and setters of ParamObj, but
efficiency is a concern and you don't need the bells and whistles provided
by ParamObj.
POD.__init__ *MUST* be called. You should NOT define your own data getters
and setters. Data values may be read, set, and modified directly. You will
see no errors if you define your own getters/setters, but there is no
guarantee that they will be called--and they will certainly be bypassed by
POD internally.
EXAMPLE CLASSES
===============
Here is an example of a class heirarchy that uses POD to manage its data:
class Enemy(POD):
DataSet = {
'faction': 'navy',
}
class Sailor(Enemy):
DataSet = {
'build': HUSKY,
'weapon': Cutlass(scale=.9),
}
EXAMPLE USAGE
=============
s = Sailor(faction='undead', build=SKINNY)
# make two copies of s
s2 = s.makeCopy()
s3 = Sailor(s)
# example sets
s2.setWeapon(Musket())
s3.build = TALL
# example gets
faction2 = s2.getFaction()
faction3 = s3.faction
"""
class POD:
DataSet = {
# base class does not define any data items, but they would
# appear here as 'name': defaultValue,
#
# WARNING: default values of mutable types that do not copy by
# value (dicts, lists etc.) will be shared by all class instances.
# if default value is callable, it will be called to get actual
# default value
#
# for example:
#
# class MapData(POD):
# DataSet = {
# 'spawnIndices': Functor(list, [1,5,22]),
# }
}
def __init__(self, **kwArgs):
self.__class__._compileDefaultDataSet()
if __debug__:
# make sure all of the keyword arguments passed in
# are present in our data set
for arg in kwArgs.keys():
assert arg in self.getDataNames(), (
"unknown argument for %s: '%s'" % (
self.__class__, arg))
# assign each of our data items directly to self
for name in self.getDataNames():
# if a value has been passed in for a data item, use
# that value, otherwise use the default value
if name in kwArgs:
getSetter(self, name)(kwArgs[name])
else:
getSetter(self, name)(self.getDefaultValue(name))
def setDefaultValues(self):
# set all the default data values on ourself
for name in self.getDataNames():
getSetter(self, name)(self.getDefaultValue(name))
# this functionality used to be in the constructor, triggered by a single
# positional argument; that was conflicting with POD subclasses that wanted
# to define different behavior for themselves when given a positional
# constructor argument
def copyFrom(self, other, strict=False):
# if 'strict' is true, other must have a value for all of our data items
# otherwise we'll use the defaults
for name in self.getDataNames():
if hasattr(other, getSetterName(name, 'get')):
setattr(self, name, getSetter(other, name, 'get')())
else:
if strict:
raise "object '%s' doesn't have value '%s'" % (other, name)
else:
setattr(self, name, self.getDefaultValue(name))
# support 'p = POD.POD().copyFrom(other)' syntax
return self
def makeCopy(self):
# returns a duplicate of this object
return self.__class__().copyFrom(self)
def applyTo(self, obj):
# Apply our entire set of data to another POD
for name in self.getDataNames():
getSetter(obj, name)(getSetter(self, name, 'get')())
def getValue(self, name):
return getSetter(self, name, 'get')()
@classmethod
def getDataNames(cls):
# returns safely-mutable list of datum names
cls._compileDefaultDataSet()
return cls._DataSet.keys()
@classmethod
def getDefaultValue(cls, name):
cls._compileDefaultDataSet()
dv = cls._DataSet[name]
# this allows us to create a new mutable object every time we ask
# for its default value, i.e. if the default value is dict, this
# method will return a new empty dictionary object every time. This
# will cause problems if the intent is to store a callable object
# as the default value itself; we need a way to specify that the
# callable *is* the default value and not a default-value creation
# function
if hasattr(dv, '__call__'):
dv = dv()
return dv
@classmethod
def _compileDefaultDataSet(cls):
if '_DataSet' in cls.__dict__:
# we've already compiled the defaults for this class
return
# create setters & getters for this class
if 'DataSet' in cls.__dict__:
for name in cls.DataSet:
setterName = getSetterName(name)
if not hasattr(cls, setterName):
def defaultSetter(self, value, name=name):
setattr(self, name, value)
cls.__dict__[setterName] = defaultSetter
getterName = getSetterName(name, 'get')
if not hasattr(cls, getterName):
def defaultGetter(self, name=name):
return getattr(self, name)
cls.__dict__[getterName] = defaultGetter
# this dict will hold all of the aggregated default data values for
# this particular class, including values from its base classes
cls._DataSet = {}
bases = list(cls.__bases__)
# process in reverse of inheritance order, so that base classes listed first
# will take precedence over later base classes
bases.reverse()
for curBase in bases:
# skip multiple-inheritance base classes that do not derive from POD
if issubclass(curBase, POD):
# make sure this base has its dict of data defaults
curBase._compileDefaultDataSet()
# grab all inherited data default values
cls._DataSet.update(curBase._DataSet)
# pull in our own class' default values if any are specified
if 'DataSet' in cls.__dict__:
cls._DataSet.update(cls.DataSet)
def __repr__(self):
argStr = ''
for name in self.getDataNames():
argStr += '%s=%s,' % (name, repr(getSetter(self, name, 'get')()))
return '%s(%s)' % (self.__class__.__name__, argStr)
if __debug__ and __name__ == '__main__':
class PODtest(POD):
DataSet = {
'foo': dict,
}
p1 = PODtest()
p2 = PODtest()
assert hasattr(p1, 'foo')
# make sure the getter is working
assert p1.getFoo() is p1.foo
p1.getFoo()[1] = 2
assert p1.foo[1] == 2
# make sure that each instance gets its own copy of a mutable
# data item
assert p1.foo is not p2.foo
assert len(p1.foo) == 1
assert len(p2.foo) == 0
# make sure the setter is working
p2.setFoo({10:20})
assert p2.foo[10] == 20
# make sure modifications to mutable data items don't affect other
# instances
assert p1.foo[1] == 2
class DerivedPOD(PODtest):
DataSet = {
'bar': list,
}
d1 = DerivedPOD()
# make sure that derived instances get their own copy of mutable
# data items
assert hasattr(d1, 'foo')
assert len(d1.foo) == 0
# make sure derived instances get their own items
assert hasattr(d1, 'bar')
assert len(d1.bar) == 0
def bound(value, bound1, bound2):
"""
returns value if value is between bound1 and bound2
otherwise returns bound that is closer to value
"""
if bound1 > bound2:
return min(max(value, bound2), bound1)
else:
return min(max(value, bound1), bound2)
clamp = bound
def lerp(v0, v1, t):
"""
returns a value lerped between v0 and v1, according to t
t == 0 maps to v0, t == 1 maps to v1
"""
return v0 + ((v1 - v0) * t)
def getShortestRotation(start, end):
"""
Given two heading values, return a tuple describing
the shortest interval from 'start' to 'end'. This tuple
can be used to lerp a camera between two rotations
while avoiding the 'spin' problem.
"""
start, end = start % 360, end % 360
if abs(end - start) > 180:
if end < start:
end += 360
else:
start += 360
return (start, end)
def average(*args):
""" returns simple average of list of values """
val = 0.
for arg in args:
val += arg
return val / len(args)
class Averager:
def __init__(self, name):
self._name = name
self.reset()
def reset(self):
self._total = 0.
self._count = 0
def addValue(self, value):
self._total += value
self._count += 1
def getAverage(self):
return self._total / self._count
def getCount(self):
return self._count
def addListsByValue(a, b):
"""
returns a new array containing the sums of the two array arguments
(c[0] = a[0 + b[0], etc.)
"""
c = []
for x, y in zip(a, b):
c.append(x + y)
return c
def boolEqual(a, b):
"""
returns true if a and b are both true or both false.
returns false otherwise
(a.k.a. xnor -- eXclusive Not OR).
"""
return (a and b) or not (a or b)
def lineupPos(i, num, spacing):
"""
use to line up a series of 'num' objects, in one dimension,
centered around zero
'i' is the index of the object in the lineup
'spacing' is the amount of space between objects in the lineup
"""
assert num >= 1
assert i >= 0 and i < num
pos = float(i) * spacing
return pos - ((float(spacing) * (num-1))/2.)
def formatElapsedSeconds(seconds):
"""
Returns a string of the form "mm:ss" or "hh:mm:ss" or "n days",
representing the indicated elapsed time in seconds.
"""
sign = ''
if seconds < 0:
seconds = -seconds
sign = '-'
# We use math.floor() instead of casting to an int, so we avoid
# problems with numbers that are too large to represent as
# type int.
seconds = math.floor(seconds)
hours = math.floor(seconds / (60 * 60))
if hours > 36:
days = math.floor((hours + 12) / 24)
return "%s%d days" % (sign, days)
seconds -= hours * (60 * 60)
minutes = (int)(seconds / 60)
seconds -= minutes * 60
if hours != 0:
return "%s%d:%02d:%02d" % (sign, hours, minutes, seconds)
else:
return "%s%d:%02d" % (sign, minutes, seconds)
def solveQuadratic(a, b, c):
# quadratic equation: ax^2 + bx + c = 0
# quadratic formula: x = [-b +/- sqrt(b^2 - 4ac)] / 2a
# returns None, root, or [root1, root2]
# a cannot be zero.
if a == 0.:
return None
# calculate the determinant (b^2 - 4ac)
D = (b * b) - (4. * a * c)
if D < 0:
# there are no solutions (sqrt(negative number) is undefined)
return None
elif D == 0:
# only one root
return (-b) / (2. * a)
else:
# OK, there are two roots
sqrtD = math.sqrt(D)
twoA = 2. * a
root1 = ((-b) - sqrtD) / twoA
root2 = ((-b) + sqrtD) / twoA
return [root1, root2]
def stackEntryInfo(depth=0, baseFileName=1):
"""
returns the sourcefilename, line number, and function name of
an entry in the stack.
'depth' is how far back to go in the stack; 0 is the caller of this
function, 1 is the function that called the caller of this function, etc.
by default, strips off the path of the filename; override with baseFileName
returns (fileName, lineNum, funcName) --> (string, int, string)
returns (None, None, None) on error
"""
try:
stack = None
frame = None
try:
stack = inspect.stack()
# add one to skip the frame associated with this function
frame = stack[depth+1]
filename = frame[1]
if baseFileName:
filename = os.path.basename(filename)
lineNum = frame[2]
funcName = frame[3]
result = (filename, lineNum, funcName)
finally:
del stack
del frame
except:
result = (None, None, None)
return result
def lineInfo(baseFileName=1):
"""
returns the sourcefilename, line number, and function name of the
code that called this function
(answers the question: 'hey lineInfo, where am I in the codebase?')
see stackEntryInfo, above, for info on 'baseFileName' and return types
"""
return stackEntryInfo(1, baseFileName)
def callerInfo(baseFileName=1, howFarBack=0):
"""
returns the sourcefilename, line number, and function name of the
caller of the function that called this function
(answers the question: 'hey callerInfo, who called me?')
see stackEntryInfo, above, for info on 'baseFileName' and return types
"""
return stackEntryInfo(2+howFarBack, baseFileName)
def lineTag(baseFileName=1, verbose=0, separator=':'):
"""
returns a string containing the sourcefilename and line number
of the code that called this function
(equivalent to lineInfo, above, with different return type)
see stackEntryInfo, above, for info on 'baseFileName'
if 'verbose' is false, returns a compact string of the form
'fileName:lineNum:funcName'
if 'verbose' is true, returns a longer string that matches the
format of Python stack trace dumps
returns empty string on error
"""
fileName, lineNum, funcName = callerInfo(baseFileName)
if fileName is None:
return ''
if verbose:
return 'File "%s", line %s, in %s' % (fileName, lineNum, funcName)
else:
return '%s%s%s%s%s' % (fileName, separator, lineNum, separator,
funcName)
def findPythonModule(module):
# Look along the python load path for the indicated filename.
# Returns the located pathname, or None if the filename is not
# found.
filename = module + '.py'
for dir in sys.path:
pathname = os.path.join(dir, filename)
if os.path.exists(pathname):
return pathname
return None
def describeException(backTrace = 4):
# When called in an exception handler, returns a string describing
# the current exception.
def byteOffsetToLineno(code, byte):
# Returns the source line number corresponding to the given byte
# offset into the indicated Python code module.
import array
lnotab = array.array('B', code.co_lnotab)
line = code.co_firstlineno
for i in range(0, len(lnotab), 2):
byte -= lnotab[i]
if byte <= 0:
return line
line += lnotab[i+1]
return line
infoArr = sys.exc_info()
exception = infoArr[0]
exceptionName = getattr(exception, '__name__', None)
extraInfo = infoArr[1]
trace = infoArr[2]
stack = []
while trace.tb_next:
# We need to call byteOffsetToLineno to determine the true
# line number at which the exception occurred, even though we
# have both trace.tb_lineno and frame.f_lineno, which return
# the correct line number only in non-optimized mode.
frame = trace.tb_frame
module = frame.f_globals.get('__name__', None)
lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti)
stack.append("%s:%s, " % (module, lineno))
trace = trace.tb_next
frame = trace.tb_frame
module = frame.f_globals.get('__name__', None)
lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti)
stack.append("%s:%s, " % (module, lineno))
description = ""
for i in range(len(stack) - 1, max(len(stack) - backTrace, 0) - 1, -1):
description += stack[i]
description += "%s: %s" % (exceptionName, extraInfo)
return description
def clampScalar(value, a, b):
# calling this ought to be faster than calling both min and max
if a < b:
if value < a:
return a
elif value > b:
return b
else:
return value
else:
if value < b:
return b
elif value > a:
return a
else:
return value
def pivotScalar(scalar, pivot):
# reflect scalar about pivot; see tests below
return pivot + (pivot - scalar)
if __debug__ and __name__ == '__main__':
assert pivotScalar(1, 0) == -1
assert pivotScalar(-1, 0) == 1
assert pivotScalar(3, 5) == 7
assert pivotScalar(10, 1) == -8
def weightedChoice(choiceList, rng=random.random, sum=None):
"""given a list of (weight, item) pairs, chooses an item based on the
weights. rng must return 0..1. if you happen to have the sum of the
weights, pass it in 'sum'."""
# TODO: add support for dicts
if sum is None:
sum = 0.
for weight, item in choiceList:
sum += weight
rand = rng()
accum = rand * sum
for weight, item in choiceList:
accum -= weight
if accum <= 0.:
return item
# rand is ~1., and floating-point error prevented accum from hitting 0.
# Or you passed in a 'sum' that was was too large.
# Return the last item.
return item
def randFloat(a, b=0., rng=random.random):
"""returns a random float in [a, b]
call with single argument to generate random float between arg and zero
"""
return lerp(a, b, rng())
def normalDistrib(a, b, gauss=random.gauss):
"""
NOTE: assumes a < b
Returns random number between a and b, using gaussian distribution, with
mean=avg(a, b), and a standard deviation that fits ~99.7% of the curve
between a and b.
For ease of use, outlying results are re-computed until result is in [a, b]
This should fit the remaining .3% of the curve that lies outside [a, b]
uniformly onto the curve inside [a, b]
------------------------------------------------------------------------
http://www-stat.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
The 68-95-99.7% Rule
====================
All normal density curves satisfy the following property which is often
referred to as the Empirical Rule:
68% of the observations fall within 1 standard deviation of the mean.
95% of the observations fall within 2 standard deviations of the mean.
99.7% of the observations fall within 3 standard deviations of the mean.
Thus, for a normal distribution, almost all values lie within 3 standard
deviations of the mean.
------------------------------------------------------------------------
In calculating our standard deviation, we divide (b-a) by 6, since the
99.7% figure includes 3 standard deviations _on_either_side_ of the mean.
"""
while True:
r = gauss((a+b)*.5, (b-a)/6.)
if (r >= a) and (r <= b):
return r
def weightedRand(valDict, rng=random.random):
"""
pass in a dictionary with a selection -> weight mapping. Eg.
{"Choice 1": 10,
"Choice 2": 30,
"bear": 100}
-Weights need not add up to any particular value.
-The actual selection will be returned.
"""
selections = valDict.keys()
weights = valDict.values()
totalWeight = 0
for weight in weights:
totalWeight += weight
# get a random value between 0 and the total of the weights
randomWeight = rng() * totalWeight
# find the index that corresponds with this weight
for i in range(len(weights)):
totalWeight -= weights[i]
if totalWeight <= randomWeight:
return selections[i]
assert True, "Should never get here"
return selections[-1]
def randUint31(rng=random.random):
"""returns a random integer in [0..2^31).
rng must return float in [0..1]"""
return int(rng() * 0x7FFFFFFF)
def randInt32(rng=random.random):
"""returns a random integer in [-2147483648..2147483647].
rng must return float in [0..1]
"""
i = int(rng() * 0x7FFFFFFF)
if rng() < .5:
i *= -1
return i
def randUint32(rng=random.random):
"""returns a random integer in [0..2^32).
rng must return float in [0..1]"""
return long(rng() * 0xFFFFFFFFL)
class SerialNumGen:
"""generates serial numbers"""
def __init__(self, start=None):
if start is None:
start = 0
self.__counter = start-1
def next(self):
self.__counter += 1
return self.__counter
class SerialMaskedGen(SerialNumGen):
def __init__(self, mask, start=None):
self._mask = mask
SerialNumGen.__init__(self, start)
def next(self):
v = SerialNumGen.next(self)
return v & self._mask
_serialGen = SerialNumGen()
def serialNum():
global _serialGen
return _serialGen.next()
def uniqueName(name):
global _serialGen
return '%s-%s' % (name, _serialGen.next())
class EnumIter:
def __init__(self, enum):
self._values = enum._stringTable.keys()
self._index = 0
def __iter__(self):
return self
def next(self):
if self._index >= len(self._values):
raise StopIteration
self._index += 1
return self._values[self._index-1]
class Enum:
"""Pass in list of strings or string of comma-separated strings.
Items are accessible as instance.item, and are assigned unique,
increasing integer values. Pass in integer for 'start' to override
starting value.
Example:
>>> colors = Enum('red, green, blue')
>>> colors.red
0
>>> colors.green
1
>>> colors.blue
2
>>> colors.getString(colors.red)
'red'
"""
if __debug__:
# chars that cannot appear within an item string.
InvalidChars = string.whitespace
def _checkValidIdentifier(item):
invalidChars = string.whitespace+string.punctuation
invalidChars = invalidChars.replace('_','')
invalidFirstChars = invalidChars+string.digits
if item[0] in invalidFirstChars:
raise SyntaxError, ("Enum '%s' contains invalid first char" %
item)
if not disjoint(item, invalidChars):
for char in item:
if char in invalidChars:
raise SyntaxError, (
"Enum\n'%s'\ncontains illegal char '%s'" %
(item, char))
return 1
_checkValidIdentifier = staticmethod(_checkValidIdentifier)
def __init__(self, items, start=0):
if type(items) == types.StringType:
items = items.split(',')
self._stringTable = {}
# make sure we don't overwrite an existing element of the class
assert self._checkExistingMembers(items)
assert uniqueElements(items)
i = start
for item in items:
# remove leading/trailing whitespace
item = string.strip(item)
# is there anything left?
if len(item) == 0:
continue
# make sure there are no invalid characters
assert Enum._checkValidIdentifier(item)
self.__dict__[item] = i
self._stringTable[i] = item
i += 1
def __iter__(self):
return EnumIter(self)
def hasString(self, string):
return string in set(self._stringTable.values())
def fromString(self, string):
if self.hasString(string):
return self.__dict__[string]
# throw an error
{}[string]
def getString(self, value):
return self._stringTable[value]
def __contains__(self, value):
return value in self._stringTable
def __len__(self):
return len(self._stringTable)
def copyTo(self, obj):
# copies all members onto obj
for name, value in self._stringTable:
setattr(obj, name, value)
if __debug__:
def _checkExistingMembers(self, items):
for item in items:
if hasattr(self, item):
return 0
return 1
############################################################
# class: Singleton
# Purpose: This provides a base metaclass for all classes
# that require one and only one instance.
#
# Example: class mySingleton:
# __metaclass__ = PythonUtil.Singleton
# def __init__(self, ...):
# ...
#
# Note: This class is based on Python's New-Style Class
# design. An error will occur if a defined class
# attemps to inherit from a Classic-Style Class only,
# ie: class myClassX:
# def __init__(self, ...):
# ...
#
# class myNewClassX(myClassX):
# __metaclass__ = PythonUtil.Singleton
# def __init__(self, ...):
# myClassX.__init__(self, ...)
# ...
#
# This causes problems because myNewClassX is a
# New-Style class that inherits from only a
# Classic-Style base class. There are two ways
# simple ways to resolve this issue.
#
# First, if possible, make myClassX a
# New-Style class by inheriting from object
# object. IE: class myClassX(object):
#
# If for some reason that is not an option, make
# myNewClassX inherit from object and myClassX.
# IE: class myNewClassX(object, myClassX):
############################################################
class Singleton(type):
def __init__(cls, name, bases, dic):
super(Singleton, cls).__init__(name, bases, dic)
cls.instance=None
def __call__(cls, *args, **kw):
if cls.instance is None:
cls.instance=super(Singleton, cls).__call__(*args, **kw)
return cls.instance
class SingletonError(ValueError):
""" Used to indicate an inappropriate value for a Singleton."""
def printListEnumGen(l):
# log each individual item with a number in front of it
digits = 0
n = len(l)
while n > 0:
digits += 1
n //= 10
format = '%0' + '%s' % digits + 'i:%s'
for i in range(len(l)):
print format % (i, l[i])
yield None
def printListEnum(l):
for result in printListEnumGen(l):
pass
# base class for all Panda C++ objects
# libdtoolconfig doesn't seem to have this, grab it off of PandaNode
dtoolSuperBase = None
def _getDtoolSuperBase():
global dtoolSuperBase
from pandac.PandaModules import PandaNode
dtoolSuperBase = PandaNode('').__class__.__bases__[0].__bases__[0].__bases__[0]
assert repr(dtoolSuperBase) == "<type 'libdtoolconfig.DTOOL_SUPER_BASE111'>" \
or repr(dtoolSuperBase) == "<type 'libdtoolconfig.DTOOL_SUPPER_BASE111'>" \
or repr(dtoolSuperBase) == "<type 'dtoolconfig.DTOOL_SUPER_BASE111'>"
safeReprNotify = None
def _getSafeReprNotify():
global safeReprNotify
from direct.directnotify.DirectNotifyGlobal import directNotify
safeReprNotify = directNotify.newCategory("safeRepr")
return safeReprNotify
def safeRepr(obj):
global dtoolSuperBase
if dtoolSuperBase is None:
_getDtoolSuperBase()
global safeReprNotify
if safeReprNotify is None:
_getSafeReprNotify()
if isinstance(obj, dtoolSuperBase):
# repr of C++ object could crash, particularly if the object has been deleted
# log that we're calling repr
safeReprNotify.info('calling repr on instance of %s.%s' % (obj.__class__.__module__, obj.__class__.__name__))
sys.stdout.flush()
try:
return repr(obj)
except:
return '<** FAILED REPR OF %s instance at %s **>' % (obj.__class__.__name__, hex(id(obj)))
def safeReprTypeOnFail(obj):
global dtoolSuperBase
if dtoolSuperBase is None:
_getDtoolSuperBase()
global safeReprNotify
if safeReprNotify is None:
_getSafeReprNotify()
if isinstance(obj, dtoolSuperBase):
return type(obj)
try:
return repr(obj)
except:
return '<** FAILED REPR OF %s instance at %s **>' % (obj.__class__.__name__, hex(id(obj)))
def fastRepr(obj, maxLen=200, strFactor=10, _visitedIds=None):
""" caps the length of iterable types, so very large objects will print faster.
also prevents infinite recursion """
try:
if _visitedIds is None:
_visitedIds = set()
if id(obj) in _visitedIds:
return '<ALREADY-VISITED %s>' % itype(obj)
if type(obj) in (types.TupleType, types.ListType):
s = ''
s += {types.TupleType: '(',
types.ListType: '[',}[type(obj)]
if maxLen is not None and len(obj) > maxLen:
o = obj[:maxLen]
ellips = '...'
else:
o = obj
ellips = ''
_visitedIds.add(id(obj))
for item in o:
s += fastRepr(item, maxLen, _visitedIds=_visitedIds)
s += ', '
_visitedIds.remove(id(obj))
s += ellips
s += {types.TupleType: ')',
types.ListType: ']',}[type(obj)]
return s
elif type(obj) is types.DictType:
s = '{'
if maxLen is not None and len(obj) > maxLen:
o = obj.keys()[:maxLen]
ellips = '...'
else:
o = obj.keys()
ellips = ''
_visitedIds.add(id(obj))
for key in o:
value = obj[key]
s += '%s: %s, ' % (fastRepr(key, maxLen, _visitedIds=_visitedIds),
fastRepr(value, maxLen, _visitedIds=_visitedIds))
_visitedIds.remove(id(obj))
s += ellips
s += '}'
return s
elif type(obj) is types.StringType:
if maxLen is not None:
maxLen *= strFactor
if maxLen is not None and len(obj) > maxLen:
return safeRepr(obj[:maxLen])
else:
return safeRepr(obj)
else:
r = safeRepr(obj)
maxLen *= strFactor
if len(r) > maxLen:
r = r[:maxLen]
return r
except:
return '<** FAILED REPR OF %s **>' % obj.__class__.__name__
baseLine = {}
def baseLineCheck():
global baseLine
import gc
obj = gc.get_objects()
baseLine = {}
for i in obj:
baseLine[str(itype(i))] = 0
for i in obj:
baseLine[str(itype(i))] += 1
def diffSinceBaseLine():
import copy
import gc
obj = gc.get_objects()
since = copy.deepcopy(baseLine)
for i in obj:
since.setdefault(str(itype(i)), 0)
for i in obj:
since[str(itype(i))] -= 1
for i in since.keys():
if not since[i]:
del since[i]
else:
since[i] = abs(since[i])
final = [(since[x],x) for x in since]
final.sort()
final.reverse()
for i in final:
print i
final = []
since = []
# Recursively expand slist's objects
# into olist, using seen to track
# already processed objects.
def _getr(slist, olist, seen):
for e in slist:
if id(e) in seen:
continue
seen[id(e)] = None
olist.append(e)
tl = gc.get_referents(e)
if tl:
_getr(tl, olist, seen)
# The public function.
def get_all_objects():
"""Return a list of all live Python
objects, not including the list itself."""
gcl = gc.get_objects()
olist = []
seen = {}
# Just in case:
seen[id(gcl)] = None
seen[id(olist)] = None
seen[id(seen)] = None
# _getr does the real work.
_getr(gcl, olist, seen)
return olist
def getIdList():
baseList = get_all_objects()
idList = {}
for i in baseList:
idList[id(i)] = i
return idList
ftype = None
def getTree(obj):
global ftype
if not ftype:
ftype = itype(sys._getframe())
objId = id(obj)
obj = None
idList = getIdList()
objList = [objId]
objTree = {objId:{}}
r_add_chain(objId, objList, objTree[objId], idList, 0 )
return convertTree(objTree, idList)
def convertTree(objTree, idList):
newTree = {}
for key in objTree.keys():
obj = (idList[key],)
newTree[obj] = {}
r_convertTree(objTree[key], newTree[obj], idList)
return newTree
def r_convertTree(oldTree, newTree, idList):
for key in oldTree.keys():
obj = idList.get(key)
if(not obj):
continue
obj = str(obj)[:100]
newTree[obj] = {}
r_convertTree(oldTree[key], newTree[obj], idList)
def pretty_print(tree):
for name in tree.keys():
print name
r_pretty_print(tree[name], 0)
def r_pretty_print(tree, num):
num+=1
for name in tree.keys():
print " "*num,name
r_pretty_print(tree[name],num)
def r_add_chain(objId, objList, objTree, idList, num):
num+=1
obj = idList.get(objId)
if(not obj):
return
refList = gc.get_referrers(obj)
for ref in refList:
refId = id(ref)
if ref == __builtins__:
continue
if ref == objList:
continue
if refId in objList:
continue
if(ref == idList):
continue
if(itype(ref) == ftype):
continue
if(itype(ref) == itype(sys)):
continue
objList.append(refId)
objTree[refId] = {}
refList = None
for refId in objTree:
r_add_chain(refId, objList, objTree[refId], idList, num)
def tagRepr(obj, tag):
"""adds a string onto the repr output of an instance"""
def reprWithTag(oldRepr, tag, self):
return oldRepr() + '::<TAG=' + tag + '>'
oldRepr = getattr(obj, '__repr__', None)
if oldRepr is None:
def stringer(s):
return s
oldRepr = Functor(stringer, repr(obj))
stringer = None
obj.__repr__ = types.MethodType(Functor(reprWithTag, oldRepr, tag), obj, obj.__class__)
reprWithTag = None
return obj
def tagWithCaller(obj):
"""add info about the caller of the caller"""
tagRepr(obj, str(callerInfo(howFarBack=1)))
def isDefaultValue(x):
return x == type(x)()
def notNone(A, B):
# returns A if not None, B otherwise
if A is None:
return B
return A
def appendStr(obj, st):
"""adds a string onto the __str__ output of an instance"""
def appendedStr(oldStr, st, self):
return oldStr() + st
oldStr = getattr(obj, '__str__', None)
if oldStr is None:
def stringer(s):
return s
oldStr = Functor(stringer, str(obj))
stringer = None
obj.__str__ = types.MethodType(Functor(appendedStr, oldStr, st), obj, obj.__class__)
appendedStr = None
return obj
# convenience shortcuts for __dev__ debugging
# we don't have the __dev__ flag at this point
try:
import pdb
set_trace = pdb.set_trace
# set_trace that can be asserted
def setTrace():
set_trace()
return True
pm = pdb.pm
except:
# we're in production, there is no pdb module. assign these to something so that the
# __builtin__ exports will work
# references in the code should either be if __dev__'d or asserted
set_trace = None
setTrace = None
pm = None
class ScratchPad:
"""empty class to stick values onto"""
def __init__(self, **kArgs):
for key, value in kArgs.iteritems():
setattr(self, key, value)
self._keys = set(kArgs.keys())
def add(self, **kArgs):
for key, value in kArgs.iteritems():
setattr(self, key, value)
self._keys.update(kArgs.keys())
def destroy(self):
for key in self._keys:
delattr(self, key)
# allow dict [] syntax
def __getitem__(self, itemName):
return getattr(self, itemName)
def get(self, itemName, default=None):
return getattr(self, itemName, default)
# allow 'in'
def __contains__(self, itemName):
return itemName in self._keys
class DestructiveScratchPad(ScratchPad):
# automatically calls destroy() on elements passed to __init__
def add(self, **kArgs):
for key, value in kArgs.iteritems():
if hasattr(self, key):
getattr(self, key).destroy()
setattr(self, key, value)
self._keys.update(kArgs.keys())
def destroy(self):
for key in self._keys:
getattr(self, key).destroy()
ScratchPad.destroy(self)
class Sync:
_SeriesGen = SerialNumGen()
def __init__(self, name, other=None):
self._name = name
if other is None:
self._series = self._SeriesGen.next()
self._value = 0
else:
self._series = other._series
self._value = other._value
def invalidate(self):
self._value = None
def change(self):
self._value += 1
def sync(self, other):
if (self._series != other._series) or (self._value != other._value):
self._series = other._series
self._value = other._value
return True
else:
return False
def isSynced(self, other):
return ((self._series == other._series) and
(self._value == other._value))
def __repr__(self):
return '%s(%s)<family=%s,value=%s>' % (self.__class__.__name__,
self._name, self._series, self._value)
class RefCounter:
def __init__(self, byId=False):
self._byId = byId
self._refCounts = {}
def _getKey(self, item):
if self._byId:
key = id(item)
else:
key = item
def inc(self, item):
key = self._getKey(item)
self._refCounts.setdefault(key, 0)
self._refCounts[key] += 1
def dec(self, item):
"""returns True if ref count has hit zero"""
key = self._getKey(item)
self._refCounts[key] -= 1
result = False
if self._refCounts[key] == 0:
result = True
del self._refCounts[key]
return result
def itype(obj):
# version of type that gives more complete information about instance types
global dtoolSuperBase
t = type(obj)
if t is types.InstanceType:
return '%s of <class %s>>' % (repr(types.InstanceType)[:-1],
str(obj.__class__))
else:
# C++ object instances appear to be types via type()
# check if this is a C++ object
if dtoolSuperBase is None:
_getDtoolSuperBase()
if isinstance(obj, dtoolSuperBase):
return '%s of %s>' % (repr(types.InstanceType)[:-1],
str(obj.__class__))
return t
def deeptype(obj, maxLen=100, _visitedIds=None):
if _visitedIds is None:
_visitedIds = set()
if id(obj) in _visitedIds:
return '<ALREADY-VISITED %s>' % itype(obj)
t = type(obj)
if t in (types.TupleType, types.ListType):
s = ''
s += {types.TupleType: '(',
types.ListType: '[',}[type(obj)]
if maxLen is not None and len(obj) > maxLen:
o = obj[:maxLen]
ellips = '...'
else:
o = obj
ellips = ''
_visitedIds.add(id(obj))
for item in o:
s += deeptype(item, maxLen, _visitedIds=_visitedIds)
s += ', '
_visitedIds.remove(id(obj))
s += ellips
s += {types.TupleType: ')',
types.ListType: ']',}[type(obj)]
return s
elif type(obj) is types.DictType:
s = '{'
if maxLen is not None and len(obj) > maxLen:
o = obj.keys()[:maxLen]
ellips = '...'
else:
o = obj.keys()
ellips = ''
_visitedIds.add(id(obj))
for key in o:
value = obj[key]
s += '%s: %s, ' % (deeptype(key, maxLen, _visitedIds=_visitedIds),
deeptype(value, maxLen, _visitedIds=_visitedIds))
_visitedIds.remove(id(obj))
s += ellips
s += '}'
return s
else:
return str(itype(obj))
def getNumberedTypedString(items, maxLen=5000, numPrefix=''):
"""get a string that has each item of the list on its own line,
and each item is numbered on the left from zero"""
digits = 0
n = len(items)
while n > 0:
digits += 1
n //= 10
digits = digits
format = numPrefix + '%0' + '%s' % digits + 'i:%s \t%s'
first = True
s = ''
snip = '<SNIP>'
for i in xrange(len(items)):
if not first:
s += '\n'
first = False
objStr = fastRepr(items[i])
if len(objStr) > maxLen:
objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip)
s += format % (i, itype(items[i]), objStr)
return s
def getNumberedTypedSortedString(items, maxLen=5000, numPrefix=''):
"""get a string that has each item of the list on its own line,
the items are stringwise-sorted, and each item is numbered on
the left from zero"""
digits = 0
n = len(items)
while n > 0:
digits += 1
n //= 10
digits = digits
format = numPrefix + '%0' + '%s' % digits + 'i:%s \t%s'
snip = '<SNIP>'
strs = []
for item in items:
objStr = fastRepr(item)
if len(objStr) > maxLen:
objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip)
strs.append(objStr)
first = True
s = ''
strs.sort()
for i in xrange(len(strs)):
if not first:
s += '\n'
first = False
objStr = strs[i]
s += format % (i, itype(items[i]), strs[i])
return s
def getNumberedTypedSortedStringWithReferrersGen(items, maxLen=10000, numPrefix=''):
"""get a string that has each item of the list on its own line,
the items are stringwise-sorted, the object's referrers are shown,
and each item is numbered on the left from zero"""
digits = 0
n = len(items)
while n > 0:
digits += 1
n //= 10
digits = digits
format = numPrefix + '%0' + '%s' % digits + 'i:%s @ %s \t%s'
snip = '<SNIP>'
strs = []
for item in items:
strs.append(fastRepr(item))
strs.sort()
for i in xrange(len(strs)):
item = items[i]
objStr = strs[i]
objStr += ', \tREFERRERS=['
referrers = gc.get_referrers(item)
for ref in referrers:
objStr += '%s@%s, ' % (itype(ref), id(ref))
objStr += ']'
if len(objStr) > maxLen:
objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip)
yield format % (i, itype(items[i]), id(items[i]), objStr)
def getNumberedTypedSortedStringWithReferrers(items, maxLen=10000, numPrefix=''):
"""get a string that has each item of the list on its own line,
the items are stringwise-sorted, the object's referrers are shown,
and each item is numbered on the left from zero"""
s = ''
for line in getNumberedTypedSortedStringWithReferrersGen(items, maxLen, numPrefix):
s += '%s\n' % line
return s
def printNumberedTyped(items, maxLen=5000):
"""print out each item of the list on its own line,
with each item numbered on the left from zero"""
digits = 0
n = len(items)
while n > 0:
digits += 1
n //= 10
digits = digits
format = '%0' + '%s' % digits + 'i:%s \t%s'
for i in xrange(len(items)):
objStr = fastRepr(items[i])
if len(objStr) > maxLen:
snip = '<SNIP>'
objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip)
print format % (i, itype(items[i]), objStr)
def printNumberedTypesGen(items, maxLen=5000):
digits = 0
n = len(items)
while n > 0:
digits += 1
n //= 10
digits = digits
format = '%0' + '%s' % digits + 'i:%s'
for i in xrange(len(items)):
print format % (i, itype(items[i]))
yield None
def printNumberedTypes(items, maxLen=5000):
"""print out the type of each item of the list on its own line,
with each item numbered on the left from zero"""
for result in printNumberedTypesGen(items, maxLen):
yield result
class DelayedCall:
""" calls a func after a specified delay """
def __init__(self, func, name=None, delay=None):
if name is None:
name = 'anonymous'
if delay is None:
delay = .01
self._func = func
self._taskName = 'DelayedCallback-%s' % name
self._delay = delay
self._finished = False
self._addDoLater()
def destroy(self):
self._finished = True
self._removeDoLater()
def finish(self):
if not self._finished:
self._doCallback()
self.destroy()
def _addDoLater(self):
taskMgr.doMethodLater(self._delay, self._doCallback, self._taskName)
def _removeDoLater(self):
taskMgr.remove(self._taskName)
def _doCallback(self, task):
self._finished = True
func = self._func
del self._func
func()
class FrameDelayedCall:
""" calls a func after N frames """
def __init__(self, name, callback, frames=None, cancelFunc=None):
# checkFunc is optional; called every frame, if returns True, FrameDelay is cancelled
# and callback is not called
if frames is None:
frames = 1
self._name = name
self._frames = frames
self._callback = callback
self._cancelFunc = cancelFunc
self._taskName = uniqueName('%s-%s' % (self.__class__.__name__, self._name))
self._finished = False
self._startTask()
def destroy(self):
self._finished = True
self._stopTask()
def finish(self):
if not self._finished:
self._finished = True
self._callback()
self.destroy()
def _startTask(self):
taskMgr.add(self._frameTask, self._taskName)
self._counter = 0
def _stopTask(self):
taskMgr.remove(self._taskName)
def _frameTask(self, task):
if self._cancelFunc and self._cancelFunc():
self.destroy()
return task.done
self._counter += 1
if self._counter >= self._frames:
self.finish()
return task.done
return task.cont
class DelayedFunctor:
""" Waits for this object to be called, then calls supplied functor after a delay.
Effectively inserts a time delay between the caller and the functor. """
def __init__(self, functor, name=None, delay=None):
self._functor = functor
self._name = name
# FunctionInterval requires __name__
self.__name__ = self._name
self._delay = delay
def _callFunctor(self):
cb = Functor(self._functor, *self._args, **self._kwArgs)
del self._functor
del self._name
del self._delay
del self._args
del self._kwArgs
del self._delayedCall
del self.__name__
cb()
def __call__(self, *args, **kwArgs):
self._args = args
self._kwArgs = kwArgs
self._delayedCall = DelayedCall(self._callFunctor, self._name, self._delay)
class SubframeCall:
"""Calls a callback at a specific time during the frame using the
task system"""
def __init__(self, functor, taskPriority, name=None):
self._functor = functor
self._name = name
self._taskName = uniqueName('SubframeCall-%s' % self._name)
taskMgr.add(self._doCallback,
self._taskName,
priority=taskPriority)
def _doCallback(self, task):
functor = self._functor
del self._functor
functor()
del self._name
self._taskName = None
return task.done
def cleanup(self):
if (self._taskName):
taskMgr.remove(self._taskName)
self._taskName = None
class ArgumentEater:
def __init__(self, numToEat, func):
self._numToEat = numToEat
self._func = func
def destroy(self):
del self._func
def __call__(self, *args, **kwArgs):
self._func(*args[self._numToEat:], **kwArgs)
class ClassTree:
def __init__(self, instanceOrClass):
if type(instanceOrClass) in (types.ClassType, types.TypeType):
cls = instanceOrClass
else:
cls = instanceOrClass.__class__
self._cls = cls
self._bases = []
for base in self._cls.__bases__:
if base not in (types.ObjectType, types.TypeType):
self._bases.append(ClassTree(base))
def getAllClasses(self):
# returns set of this class and all base classes
classes = set()
classes.add(self._cls)
for base in self._bases:
classes.update(base.getAllClasses())
return classes
def _getStr(self, indent=None, clsLeftAtIndent=None):
# indent is how far to the right to indent (i.e. how many levels
# deep in the hierarchy from the most-derived)
#
# clsLeftAtIndent is an array of # of classes left to be
# printed at each level of the hierarchy; most-derived is
# at index 0
if indent is None:
indent = 0
clsLeftAtIndent = [1]
s = ''
if (indent > 1):
for i in range(1, indent):
# if we have not printed all base classes at
# this indent level, keep printing the vertical
# column
if clsLeftAtIndent[i] > 0:
s += ' |'
else:
s += ' '
if (indent > 0):
s += ' +'
s += self._cls.__name__
clsLeftAtIndent[indent] -= 1
"""
### show the module to the right of the class name
moduleIndent = 48
if len(s) >= moduleIndent:
moduleIndent = (len(s) % 4) + 4
padding = moduleIndent - len(s)
s += padding * ' '
s += self._cls.__module__
###
"""
if len(self._bases):
newList = list(clsLeftAtIndent)
newList.append(len(self._bases))
bases = self._bases
# print classes with fewer bases first
bases.sort(lambda x,y: len(x._bases)-len(y._bases))
for base in bases:
s += '\n%s' % base._getStr(indent+1, newList)
return s
def __repr__(self):
return self._getStr()
class PStatScope:
collectors = {}
def __init__(self, level = None):
self.levels = []
if level:
self.levels.append(level)
def copy(self, push = None):
c = PStatScope()
c.levels = self.levels[:]
if push:
c.push(push)
return c
def __repr__(self):
return 'PStatScope - \'%s\'' % (self,)
def __str__(self):
return ':'.join(self.levels)
def push(self, level):
self.levels.append(level.replace('_',''))
def pop(self):
return self.levels.pop()
def start(self, push = None):
if push:
self.push(push)
pass
self.getCollector().start()
def stop(self, pop = False):
self.getCollector().stop()
if pop:
self.pop()
def getCollector(self):
label = str(self)
if label not in self.collectors:
from pandac.PandaModules import PStatCollector
self.collectors[label] = PStatCollector(label)
pass
# print ' ',self.collectors[label]
return self.collectors[label]
def pstatcollect(scope, level = None):
def decorator(f):
return f
try:
if not (__dev__ or config.GetBool('force-pstatcollect', 0)) or \
not scope:
return decorator
def decorator(f):
def wrap(*args, **kw):
scope.start(push = (level or f.__name__))
val = f(*args, **kw)
scope.stop(pop = True)
return val
return wrap
pass
except:
pass
return decorator
__report_indent = 0
def report(types = [], prefix = '', xform = None, notifyFunc = None, dConfigParam = []):
"""
This is a decorator generating function. Use is similar to
a @decorator, except you must be sure to call it as a function.
It actually returns the decorator which is then used to transform
your decorated function. Confusing at first, I know.
Decoration occurs at function definition time.
If __dev__ is not defined, or resolves to False, this function
has no effect and no wrapping/transform occurs. So in production,
it's as if the report has been asserted out.
Parameters::
types : A subset list of ['timeStamp', 'frameCount', 'avLocation']
This allows you to specify certain useful bits of info.
module: Prints the module that this report statement
can be found in.
args: Prints the arguments as they were passed to
this function.
timeStamp: Adds the current frame time to the output.
deltaStamp: Adds the current AI synched frame time to
the output
frameCount: Adds the current frame count to the output.
Usually cleaner than the timeStamp output.
avLocation: Adds the localAvatar's network location
to the output. Useful for interest debugging.
interests: Prints the current interest state after the
report.
stackTrace: Prints a stack trace after the report.
prefix: Optional string to prepend to output, just before the function.
Allows for easy grepping and is useful when merging AI/Client
reports into a single file.
xform: Optional callback that accepts a single parameter: argument 0 to
the decorated function. (assumed to be 'self')
It should return a value to be inserted into the report output string.
notifyFunc: A notify function such as info, debug, warning, etc.
By default the report will be printed to stdout. This
will allow you send the report to a designated 'notify'
output.
dConfigParam: A list of Config.prc string variables.
By default the report will always print. If you
specify this param, it will only print if one of the
specified config strings resolve to True.
"""
def indent(str):
global __report_indent
return ' '*__report_indent+str
def decorator(f):
return f
try:
if not (__dev__ or config.GetBool('force-reports', 0)):
return decorator
# determine whether we should use the decorator
# based on the value of dConfigParam.
dConfigParamList = []
doPrint = False
if not dConfigParam:
doPrint = True
else:
if not isinstance(dConfigParam, (list,tuple)):
dConfigParams = (dConfigParam,)
else:
dConfigParams = dConfigParam
dConfigParamList = [param for param in dConfigParams \
if config.GetBool('want-%s-report' % (param,), 0)]
doPrint = bool(dConfigParamList)
pass
if not doPrint:
return decorator
# Determine any prefixes defined in our Config.prc.
if prefix:
prefixes = set([prefix])
else:
prefixes = set()
pass
for param in dConfigParamList:
prefix = config.GetString('prefix-%s-report' % (param,), '')
if prefix:
prefixes.add(prefix)
pass
pass
except NameError,e:
return decorator
from direct.distributed.ClockDelta import globalClockDelta
def decorator(f):
def wrap(*args,**kwargs):
if args:
rArgs = [args[0].__class__.__name__ + ', ']
else:
rArgs = []
if 'args' in types:
rArgs += [repr(x)+', ' for x in args[1:]] + \
[ x + ' = ' + '%s, ' % repr(y) for x,y in kwargs.items()]
if not rArgs:
rArgs = '()'
else:
rArgs = '(' + reduce(str.__add__,rArgs)[:-2] + ')'
outStr = '%s%s' % (f.func_name, rArgs)
# Insert prefix place holder, if needed
if prefixes:
outStr = '%%s %s' % (outStr,)
if 'module' in types:
outStr = '%s {M:%s}' % (outStr, f.__module__.split('.')[-1])
if 'frameCount' in types:
outStr = '%-8d : %s' % (globalClock.getFrameCount(), outStr)
if 'timeStamp' in types:
outStr = '%-8.3f : %s' % (globalClock.getFrameTime(), outStr)
if 'deltaStamp' in types:
outStr = '%-8.2f : %s' % (globalClock.getRealTime() - \
globalClockDelta.delta, outStr)
if 'avLocation' in types:
outStr = '%s : %s' % (outStr, str(localAvatar.getLocation()))
if xform:
outStr = '%s : %s' % (outStr, xform(args[0]))
if prefixes:
# This will print the same report once for each prefix
for prefix in prefixes:
if notifyFunc:
notifyFunc(outStr % (prefix,))
else:
print indent(outStr % (prefix,))
else:
if notifyFunc:
notifyFunc(outStr)
else:
print indent(outStr)
if 'interests' in types:
base.cr.printInterestSets()
if 'stackTrace' in types:
print StackTrace()
global __report_indent
rVal = None
try:
__report_indent += 1
rVal = f(*args,**kwargs)
finally:
__report_indent -= 1
if rVal is not None:
print indent(' -> '+repr(rVal))
pass
pass
return rVal
wrap.func_name = f.func_name
wrap.func_dict = f.func_dict
wrap.func_doc = f.func_doc
wrap.__module__ = f.__module__
return wrap
return decorator
def getBase():
try:
return base
except:
return simbase
def getRepository():
try:
return base.cr
except:
return simbase.air
exceptionLoggedNotify = None
def exceptionLogged(append=True):
"""decorator that outputs the function name and all arguments
if an exception passes back through the stack frame
if append is true, string is appended to the __str__ output of
the exception. if append is false, string is printed to the log
directly. If the output will take up many lines, it's recommended
to set append to False so that the exception stack is not hidden
by the output of this decorator.
"""
try:
null = not __dev__
except:
null = not __debug__
if null:
# if we're not in __dev__, just return the function itself. This
# results in zero runtime overhead, since decorators are evaluated
# at module-load.
def nullDecorator(f):
return f
return nullDecorator
def _decoratorFunc(f, append=append):
global exceptionLoggedNotify
if exceptionLoggedNotify is None:
from direct.directnotify.DirectNotifyGlobal import directNotify
exceptionLoggedNotify = directNotify.newCategory("ExceptionLogged")
def _exceptionLogged(*args, **kArgs):
try:
return f(*args, **kArgs)
except Exception, e:
try:
s = '%s(' % f.func_name
for arg in args:
s += '%s, ' % arg
for key, value in kArgs.items():
s += '%s=%s, ' % (key, value)
if len(args) or len(kArgs):
s = s[:-2]
s += ')'
if append:
appendStr(e, '\n%s' % s)
else:
exceptionLoggedNotify.info(s)
except:
exceptionLoggedNotify.info(
'%s: ERROR IN PRINTING' % f.func_name)
raise
_exceptionLogged.__doc__ = f.__doc__
return _exceptionLogged
return _decoratorFunc
# class 'decorator' that records the stack at the time of creation
# be careful with this, it creates a StackTrace, and that can take a
# lot of CPU
def recordCreationStack(cls):
if not hasattr(cls, '__init__'):
raise 'recordCreationStack: class \'%s\' must define __init__' % cls.__name__
cls.__moved_init__ = cls.__init__
def __recordCreationStack_init__(self, *args, **kArgs):
self._creationStackTrace = StackTrace(start=1)
return self.__moved_init__(*args, **kArgs)
def getCreationStackTrace(self):
return self._creationStackTrace
def getCreationStackTraceCompactStr(self):
return self._creationStackTrace.compact()
def printCreationStackTrace(self):
print self._creationStackTrace
cls.__init__ = __recordCreationStack_init__
cls.getCreationStackTrace = getCreationStackTrace
cls.getCreationStackTraceCompactStr = getCreationStackTraceCompactStr
cls.printCreationStackTrace = printCreationStackTrace
return cls
# like recordCreationStack but stores the stack as a compact stack list-of-strings
# scales well for memory usage
def recordCreationStackStr(cls):
if not hasattr(cls, '__init__'):
raise 'recordCreationStackStr: class \'%s\' must define __init__' % cls.__name__
cls.__moved_init__ = cls.__init__
def __recordCreationStackStr_init__(self, *args, **kArgs):
# store as list of strings to conserve memory
self._creationStackTraceStrLst = StackTrace(start=1).compact().split(',')
return self.__moved_init__(*args, **kArgs)
def getCreationStackTraceCompactStr(self):
return ','.join(self._creationStackTraceStrLst)
def printCreationStackTrace(self):
print ','.join(self._creationStackTraceStrLst)
cls.__init__ = __recordCreationStackStr_init__
cls.getCreationStackTraceCompactStr = getCreationStackTraceCompactStr
cls.printCreationStackTrace = printCreationStackTrace
return cls
# class 'decorator' that logs all method calls for a particular class
def logMethodCalls(cls):
if not hasattr(cls, 'notify'):
raise 'logMethodCalls: class \'%s\' must have a notify' % cls.__name__
for name in dir(cls):
method = getattr(cls, name)
if hasattr(method, '__call__'):
def getLoggedMethodCall(method):
def __logMethodCall__(obj, *args, **kArgs):
s = '%s(' % method.__name__
for arg in args:
try:
argStr = repr(arg)
except:
argStr = 'bad repr: %s' % arg.__class__
s += '%s, ' % argStr
for karg, value in kArgs.items():
s += '%s=%s, ' % (karg, repr(value))
if len(args) or len(kArgs):
s = s[:-2]
s += ')'
obj.notify.info(s)
return method(obj, *args, **kArgs)
return __logMethodCall__
setattr(cls, name, getLoggedMethodCall(method))
__logMethodCall__ = None
return cls
# http://en.wikipedia.org/wiki/Golden_ratio
GoldenRatio = (1. + math.sqrt(5.)) / 2.
class GoldenRectangle:
@staticmethod
def getLongerEdge(shorter):
return shorter * GoldenRatio
@staticmethod
def getShorterEdge(longer):
return longer / GoldenRatio
class HotkeyBreaker:
def __init__(self,breakKeys = []):
from direct.showbase.DirectObject import DirectObject
self.do = DirectObject()
self.breakKeys = {}
if not isinstance(breakKeys, (list,tuple)):
breakKeys = (breakKeys,)
for key in breakKeys:
self.addBreakKey(key)
def addBreakKey(self,breakKey):
if __dev__:
self.do.accept(breakKey,self.breakFunc,extraArgs = [breakKey])
def removeBreakKey(self,breakKey):
if __dev__:
self.do.ignore(breakKey)
def breakFunc(self,breakKey):
if __dev__:
self.breakKeys[breakKey] = True
def setBreakPt(self, breakKey = None, persistent = False):
if __dev__:
if not breakKey:
import pdb;pdb.set_trace()
return True
else:
if self.breakKeys.get(breakKey,False):
if not persistent:
self.breakKeys.pop(breakKey)
import pdb;pdb.set_trace()
return True
return True
def clearBreakPt(self, breakKey):
if __dev__:
return bool(self.breakKeys.pop(breakKey,None))
def nullGen():
# generator that ends immediately
if False:
# yield that never runs but still exists, making this func a generator
yield None
def loopGen(l):
# generator that yields the items of an iterable object forever
def _gen(l):
while True:
for item in l:
yield item
gen = _gen(l)
# don't leak
_gen = None
return gen
def makeFlywheelGen(objects, countList=None, countFunc=None, scale=None):
# iterates and finally yields a flywheel generator object
# the number of appearances for each object is controlled by passing in
# a list of counts, or a functor that returns a count when called with
# an object from the 'objects' list.
# if scale is provided, all counts are scaled by the scale value and then int()'ed.
def flywheel(index2objectAndCount):
# generator to produce a sequence whose elements appear a specific number of times
while len(index2objectAndCount):
keyList = index2objectAndCount.keys()
for key in keyList:
if index2objectAndCount[key][1] > 0:
yield index2objectAndCount[key][0]
index2objectAndCount[key][1] -= 1
if index2objectAndCount[key][1] <= 0:
del index2objectAndCount[key]
# if we were not given a list of counts, create it by calling countFunc
if countList is None:
countList = []
for object in objects:
yield None
countList.append(countFunc(object))
if scale is not None:
# scale the counts if we've got a scale factor
for i in xrange(len(countList)):
yield None
if countList[i] > 0:
countList[i] = max(1, int(countList[i] * scale))
# create a dict for the flywheel to use during its iteration to efficiently select
# the objects for the sequence
index2objectAndCount = {}
for i in xrange(len(countList)):
yield None
index2objectAndCount[i] = [objects[i], countList[i]]
# create the flywheel generator
yield flywheel(index2objectAndCount)
def flywheel(*args, **kArgs):
# create a flywheel generator
# see arguments and comments in flywheelGen above
# example usage:
"""
>>> for i in flywheel([1,2,3], countList=[10, 5, 1]):
... print i,
...
1 2 3 1 2 1 2 1 2 1 2 1 1 1 1 1
"""
for flywheel in makeFlywheelGen(*args, **kArgs):
pass
return flywheel
if __debug__ and __name__ == '__main__':
f = flywheel(['a','b','c','d'], countList=[11,20,3,4])
obj2count = {}
for obj in f:
obj2count.setdefault(obj, 0)
obj2count[obj] += 1
assert obj2count['a'] == 11
assert obj2count['b'] == 20
assert obj2count['c'] == 3
assert obj2count['d'] == 4
f = flywheel([1,2,3,4], countFunc=lambda x: x*2)
obj2count = {}
for obj in f:
obj2count.setdefault(obj, 0)
obj2count[obj] += 1
assert obj2count[1] == 2
assert obj2count[2] == 4
assert obj2count[3] == 6
assert obj2count[4] == 8
f = flywheel([1,2,3,4], countFunc=lambda x: x, scale = 3)
obj2count = {}
for obj in f:
obj2count.setdefault(obj, 0)
obj2count[obj] += 1
assert obj2count[1] == 1 * 3
assert obj2count[2] == 2 * 3
assert obj2count[3] == 3 * 3
assert obj2count[4] == 4 * 3
def quickProfile(name="unnamed"):
import pstats
def profileDecorator(f):
if(not config.GetBool("use-profiler",0)):
return f
def _profiled(*args, **kArgs):
# must do this in here because we don't have base/simbase
# at the time that PythonUtil is loaded
if(not config.GetBool("profile-debug",0)):
#dumb timings
st=globalClock.getRealTime()
f(*args,**kArgs)
s=globalClock.getRealTime()-st
print "Function %s.%s took %s seconds"%(f.__module__, f.__name__,s)
else:
import profile as prof, pstats
#detailed profile, stored in base.stats under (
if(not hasattr(base,"stats")):
base.stats={}
if(not base.stats.get(name)):
base.stats[name]=[]
prof.runctx('f(*args, **kArgs)', {'f':f,'args':args,'kArgs':kArgs},None,"t.prof")
s=pstats.Stats("t.prof")
#p=hotshot.Profile("t.prof")
#p.runctx('f(*args, **kArgs)', {'f':f,'args':args,'kArgs':kArgs},None)
#s = hotshot.stats.load("t.prof")
s.strip_dirs()
s.sort_stats("cumulative")
base.stats[name].append(s)
_profiled.__doc__ = f.__doc__
return _profiled
return profileDecorator
def getTotalAnnounceTime():
td=0
for objs in base.stats.values():
for stat in objs:
td+=getAnnounceGenerateTime(stat)
return td
def getAnnounceGenerateTime(stat):
val=0
stats=stat.stats
for i in stats.keys():
if(i[2]=="announceGenerate"):
newVal=stats[i][3]
if(newVal>val):
val=newVal
return val
def choice(condition, ifTrue, ifFalse):
# equivalent of C++ (condition ? ifTrue : ifFalse)
if condition:
return ifTrue
else:
return ifFalse
class MiniLog:
def __init__(self, name):
self.indent = 1
self.name = name
self.lines = []
def __str__(self):
return '%s\nMiniLog: %s\n%s\n%s\n%s' % \
('*'*50, self.name, '-'*50, '\n'.join(self.lines), '*'*50)
def enterFunction(self, funcName, *args, **kw):
rArgs = [repr(x)+', ' for x in args] + \
[ x + ' = ' + '%s, ' % repr(y) for x,y in kw.items()]
if not rArgs:
rArgs = '()'
else:
rArgs = '(' + reduce(str.__add__,rArgs)[:-2] + ')'
line = '%s%s' % (funcName, rArgs)
self.appendFunctionCall(line)
self.indent += 1
return line
def exitFunction(self):
self.indent -= 1
return self.indent
def appendFunctionCall(self, line):
self.lines.append(' '*(self.indent*2) + line)
return line
def appendLine(self, line):
self.lines.append(' '*(self.indent*2) + '<< ' + line + ' >>')
return line
def flush(self):
outStr = str(self)
self.indent = 0
self.lines = []
return outStr
class MiniLogSentry:
def __init__(self, log, funcName, *args, **kw):
self.log = log
if self.log:
self.log.enterFunction(funcName, *args, **kw)
def __del__(self):
if self.log:
self.log.exitFunction()
del self.log
def logBlock(id, msg):
print '<< LOGBLOCK(%03d)' % id
print str(msg)
print '/LOGBLOCK(%03d) >>' % id
class HierarchyException(Exception):
JOSWILSO = 0
def __init__(self, owner, description):
self.owner = owner
self.desc = description
def __str__(self):
return '(%s): %s' % (self.owner, self.desc)
def __repr__(self):
return 'HierarchyException(%s)' % (self.owner, )
# __dev__ is not defined at import time, call this after it's defined
def recordFunctorCreationStacks():
global Functor
from pandac.PandaModules import getConfigShowbase
config = getConfigShowbase()
# off by default, very slow
if __dev__ and config.GetBool('record-functor-creation-stacks', 0):
if not hasattr(Functor, '_functorCreationStacksRecorded'):
Functor = recordCreationStackStr(Functor)
Functor._functorCreationStacksRecorded = True
Functor.__call__ = Functor._exceptionLoggedCreationStack__call__
def formatTimeCompact(seconds):
# returns string in format '1d3h22m43s'
result = ''
a = int(seconds)
seconds = a % 60
a //= 60
if a > 0:
minutes = a % 60
a //= 60
if a > 0:
hours = a % 24
a //= 24
if a > 0:
days = a
result += '%sd' % days
result += '%sh' % hours
result += '%sm' % minutes
result += '%ss' % seconds
return result
if __debug__ and __name__ == '__main__':
ftc = formatTimeCompact
assert ftc(0) == '0s'
assert ftc(1) == '1s'
assert ftc(60) == '1m0s'
assert ftc(64) == '1m4s'
assert ftc(60*60) == '1h0m0s'
assert ftc(24*60*60) == '1d0h0m0s'
assert ftc(24*60*60 + 2*60*60 + 34*60 + 12) == '1d2h34m12s'
del ftc
def formatTimeExact(seconds):
# like formatTimeCompact but leaves off '0 seconds', '0 minutes' etc. for
# times that are e.g. 1 hour, 3 days etc.
# returns string in format '1d3h22m43s'
result = ''
a = int(seconds)
seconds = a % 60
a //= 60
if a > 0:
minutes = a % 60
a //= 60
if a > 0:
hours = a % 24
a //= 24
if a > 0:
days = a
result += '%sd' % days
if hours or minutes or seconds:
result += '%sh' % hours
if minutes or seconds:
result += '%sm' % minutes
if seconds or result == '':
result += '%ss' % seconds
return result
if __debug__ and __name__ == '__main__':
fte = formatTimeExact
assert fte(0) == '0s'
assert fte(1) == '1s'
assert fte(2) == '2s'
assert fte(61) == '1m1s'
assert fte(60) == '1m'
assert fte(60*60) == '1h'
assert fte(24*60*60) == '1d'
assert fte((24*60*60) + (2 * 60)) == '1d0h2m'
del fte
class AlphabetCounter:
# object that produces 'A', 'B', 'C', ... 'AA', 'AB', etc.
def __init__(self):
self._curCounter = ['A']
def next(self):
result = ''.join([c for c in self._curCounter])
index = -1
while True:
curChar = self._curCounter[index]
if curChar is 'Z':
nextChar = 'A'
carry = True
else:
nextChar = chr(ord(self._curCounter[index])+1)
carry = False
self._curCounter[index] = nextChar
if carry:
if (-index) == len(self._curCounter):
self._curCounter = ['A',] + self._curCounter
break
else:
index -= 1
carry = False
else:
break
return result
if __debug__ and __name__ == '__main__':
def testAlphabetCounter():
tempList = []
ac = AlphabetCounter()
for i in xrange(26*3):
tempList.append(ac.next())
assert tempList == [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'AA','AB','AC','AD','AE','AF','AG','AH','AI','AJ','AK','AL','AM','AN','AO','AP','AQ','AR','AS','AT','AU','AV','AW','AX','AY','AZ',
'BA','BB','BC','BD','BE','BF','BG','BH','BI','BJ','BK','BL','BM','BN','BO','BP','BQ','BR','BS','BT','BU','BV','BW','BX','BY','BZ',]
ac = AlphabetCounter()
num = 26 # A-Z
num += (26*26) # AA-ZZ
num += 26 # AAZ
num += 1 # ABA
num += 2 # ABC
for i in xrange(num):
x = ac.next()
assert x == 'ABC'
testAlphabetCounter()
del testAlphabetCounter
globalPdb = None
traceCalled = False
def setupPdb():
import pdb;
class pandaPdb(pdb.Pdb):
def stop_here(self, frame):
global traceCalled
if(traceCalled):
result = pdb.Pdb.stop_here(self, frame)
if(result == True):
traceCalled = False
return result
if frame is self.stopframe:
return True
return False
global globalPdb
globalPdb = pandaPdb()
globalPdb.reset()
sys.settrace(globalPdb.trace_dispatch)
def pandaTrace():
if __dev__:
if not globalPdb:
setupPdb()
global traceCalled
globalPdb.set_trace(sys._getframe().f_back)
traceCalled = True
packageMap = {
"toontown":"$TOONTOWN",
"direct":"$DIRECT",
"otp":"$OTP",
"pirates":"$PIRATES",
}
#assuming . dereferncing for nice linking to imports
def pandaBreak(dotpath, linenum, temporary = 0, cond = None):
if __dev__:
from pandac.PandaModules import Filename
if not globalPdb:
setupPdb()
dirs = dotpath.split(".")
root = Filename.expandFrom(packageMap[dirs[0]]).toOsSpecific()
filename = root + "\\src"
for d in dirs[1:]:
filename="%s\\%s"%(filename,d)
print filename
globalPdb.set_break(filename+".py", linenum, temporary, cond)
class Default:
# represents 'use the default value'
# useful for keyword arguments to virtual methods
pass
superLogFile = None
def startSuperLog(customFunction = None):
global superLogFile
if(not superLogFile):
superLogFile = open("c:\\temp\\superLog.txt", "w")
def trace_dispatch(a,b,c):
if(b=='call' and a.f_code.co_name != '?' and a.f_code.co_name.find("safeRepr")<0):
vars = dict(a.f_locals)
if 'self' in vars:
del vars['self']
if '__builtins__' in vars:
del vars['__builtins__']
for i in vars:
vars[i] = safeReprTypeOnFail(vars[i])
if customFunction:
superLogFile.write( "before = %s\n"%customFunction())
superLogFile.write( "%s(%s):%s:%s\n"%(a.f_code.co_filename.split("\\")[-1],a.f_code.co_firstlineno, a.f_code.co_name, vars))
if customFunction:
superLogFile.write( "after = %s\n"%customFunction())
return trace_dispatch
sys.settrace(trace_dispatch)
def endSuperLog():
global superLogFile
if(superLogFile):
sys.settrace(None)
superLogFile.close()
superLogFile = None
def isInteger(n):
return type(n) in (types.IntType, types.LongType)
def configIsToday(configName):
# TODO: replace usage of strptime with something else
# returns true if config string is a valid representation of today's date
today = time.localtime()
confStr = config.GetString(configName, '')
for format in ('%m/%d/%Y', '%m-%d-%Y', '%m.%d.%Y'):
try:
confDate = time.strptime(confStr, format)
except ValueError:
pass
else:
if (confDate.tm_year == today.tm_year and
confDate.tm_mon == today.tm_mon and
confDate.tm_mday == today.tm_mday):
return True
return False
def typeName(o):
if hasattr(o, '__class__'):
return o.__class__.__name__
else:
return o.__name__
def safeTypeName(o):
try:
return typeName(o)
except:
pass
try:
return type(o)
except:
pass
return '<failed safeTypeName()>'
def histogramDict(l):
d = {}
for e in l:
d.setdefault(e, 0)
d[e] += 1
return d
def unescapeHtmlString(s):
# converts %## to corresponding character
# replaces '+' with ' '
result = ''
i = 0
while i < len(s):
char = s[i]
if char == '+':
char = ' '
elif char == '%':
if i < (len(s)-2):
num = int(s[i+1:i+3], 16)
char = chr(num)
i += 2
i += 1
result += char
return result
if __debug__ and __name__ == '__main__':
assert unescapeHtmlString('asdf') == 'asdf'
assert unescapeHtmlString('as+df') == 'as df'
assert unescapeHtmlString('as%32df') == 'as2df'
assert unescapeHtmlString('asdf%32') == 'asdf2'
class HTMLStringToElements(HTMLParser):
def __init__(self, str, *a, **kw):
self._elements = []
self._elementStack = Stack()
HTMLParser.__init__(self, *a, **kw)
self.feed(str)
self.close()
def getElements(self):
return self._elements
def _handleNewElement(self, element):
if len(self._elementStack):
self._elementStack.top().append(element)
else:
self._elements.append(element)
self._elementStack.push(element)
def handle_starttag(self, tag, attrs):
kwArgs = {}
for name, value in attrs:
kwArgs[name] = value
el = ET.Element(tag, **kwArgs)
self._handleNewElement(el)
def handle_data(self, data):
# this ignores text outside of a tag
if len(self._elementStack):
self._elementStack.top().text = data
def handle_endtag(self, tag):
top = self._elementStack.top()
if len(top.getchildren()) == 0:
# insert a comment to prevent ElementTree from using <... /> convention
# force it to create a tag closer a la </tag>
# prevents problems in certain browsers
if top.tag == 'script' and top.get('type') == 'text/javascript':
if top.text == None:
top.text = '// force tag closer'
else:
self.handle_comment('force tag closer')
self._elementStack.pop()
self._elementStack.pop()
def handle_comment(self, data):
comment = ET.Comment(data)
self._handleNewElement(comment)
def str2elements(str):
return HTMLStringToElements(str).getElements()
if __debug__ and __name__ == '__main__':
s = ScratchPad()
assert len(str2elements('')) == 0
s.br = str2elements('<br>')
assert len(s.br) == 1
assert s.br[0].tag == 'br'
s.b = str2elements('<b><br></b>')
assert len(s.b) == 1
assert len(s.b[0].getchildren()) == 1
s.a = str2elements('<a href=\'/\'>test</a>')
assert len(s.a) == 1
assert s.a[0].get('href') == '/'
assert s.a[0].text == 'test'
s.c = str2elements('<!--testComment-->')
assert len(s.c) == 1
assert s.c[0].text == 'testComment'
del s
def repeatableRepr(obj):
if type(obj) is types.DictType:
keys = obj.keys()
keys.sort()
s = '{'
for i in xrange(len(keys)):
key = keys[i]
s += repeatableRepr(key)
s += ': '
s += repeatableRepr(obj[key])
if i < (len(keys)-1):
s += ', '
s += '}'
return s
elif type(obj) is type(set()):
l = []
for item in obj:
l.append(item)
l.sort()
return repeatableRepr(l)
return repr(obj)
if __debug__ and __name__ == '__main__':
assert repeatableRepr({1: 'a', 2: 'b'}) == repeatableRepr({2: 'b', 1: 'a'})
assert repeatableRepr(set([1,2,3])) == repeatableRepr(set([3,2,1]))
#set up bpdb
bpdb = BpDb.BpDb()
def bpdbGetEnabled():
enabled = True
try:
enabled = __dev__
enabled = ConfigVariableBool('force-breakpoints', enabled).getValue()
finally:
return enabled
bpdb.setEnabledCallback(bpdbGetEnabled)
bpdb.setConfigCallback(lambda cfg: ConfigVariableBool('want-bp-%s' % (cfg.lower(),), 0).getValue())
def u2ascii(s):
# Unicode -> ASCII
if type(s) is types.UnicodeType:
return unicodedata.normalize('NFKD', s).encode('ascii', 'backslashreplace')
else:
return str(s)
def unicodeUtf8(s):
# * -> Unicode UTF-8
if type(s) is types.UnicodeType:
return s
else:
return unicode(str(s), 'utf-8')
def encodedUtf8(s):
# * -> 8-bit-encoded UTF-8
return unicodeUtf8(s).encode('utf-8')
class PriorityCallbacks:
""" manage a set of prioritized callbacks, and allow them to be invoked in order of priority """
def __init__(self):
self._callbacks = []
def clear(self):
while self._callbacks:
self._callbacks.pop()
def add(self, callback, priority=None):
if priority is None:
priority = 0
item = (priority, callback)
bisect.insort(self._callbacks, item)
return item
def remove(self, item):
self._callbacks.pop(bisect.bisect_left(self._callbacks, item))
def __call__(self):
for priority, callback in self._callbacks:
callback()
if __debug__ and __name__ == '__main__':
l = []
def a(l=l):
l.append('a')
def b(l=l):
l.append('b')
def c(l=l):
l.append('c')
pc = PriorityCallbacks()
pc.add(a)
pc()
assert l == ['a']
while len(l):
l.pop()
bItem = pc.add(b)
pc()
assert 'a' in l
assert 'b' in l
assert len(l) == 2
while len(l):
l.pop()
pc.remove(bItem)
pc()
assert l == ['a']
while len(l):
l.pop()
pc.add(c, 2)
bItem = pc.add(b, 10)
pc()
assert l == ['a', 'c', 'b']
while len(l):
l.pop()
pc.remove(bItem)
pc()
assert l == ['a', 'c']
while len(l):
l.pop()
pc.clear()
pc()
assert len(l) == 0
del l
del a
del b
del c
del pc
del bItem
import __builtin__
__builtin__.Functor = Functor
__builtin__.Stack = Stack
__builtin__.Queue = Queue
__builtin__.Enum = Enum
__builtin__.SerialNumGen = SerialNumGen
__builtin__.SerialMaskedGen = SerialMaskedGen
__builtin__.ScratchPad = ScratchPad
__builtin__.DestructiveScratchPad = DestructiveScratchPad
__builtin__.uniqueName = uniqueName
__builtin__.serialNum = serialNum
__builtin__.profiled = profiled
__builtin__.set_trace = set_trace
__builtin__.setTrace = setTrace
__builtin__.pm = pm
__builtin__.itype = itype
__builtin__.exceptionLogged = exceptionLogged
__builtin__.appendStr = appendStr
__builtin__.bound = bound
__builtin__.clamp = clamp
__builtin__.lerp = lerp
__builtin__.notNone = notNone
__builtin__.clampScalar = clampScalar
__builtin__.makeList = makeList
__builtin__.makeTuple = makeTuple
__builtin__.printStack = printStack
__builtin__.printReverseStack = printReverseStack
__builtin__.printVerboseStack = printVerboseStack
__builtin__.DelayedCall = DelayedCall
__builtin__.DelayedFunctor = DelayedFunctor
__builtin__.FrameDelayedCall = FrameDelayedCall
__builtin__.SubframeCall = SubframeCall
__builtin__.ArgumentEater = ArgumentEater
__builtin__.ClassTree = ClassTree
__builtin__.invertDict = invertDict
__builtin__.invertDictLossless = invertDictLossless
__builtin__.getBase = getBase
__builtin__.getRepository = getRepository
__builtin__.safeRepr = safeRepr
__builtin__.fastRepr = fastRepr
__builtin__.nullGen = nullGen
__builtin__.flywheel = flywheel
__builtin__.loopGen = loopGen
__builtin__.StackTrace = StackTrace
__builtin__.choice = choice
__builtin__.report = report
__builtin__.pstatcollect = pstatcollect
__builtin__.MiniLog = MiniLog
__builtin__.MiniLogSentry = MiniLogSentry
__builtin__.logBlock = logBlock
__builtin__.HierarchyException = HierarchyException
__builtin__.pdir = pdir
__builtin__.deeptype = deeptype
__builtin__.Default = Default
__builtin__.isInteger = isInteger
__builtin__.configIsToday = configIsToday
__builtin__.typeName = typeName
__builtin__.safeTypeName = safeTypeName
__builtin__.histogramDict = histogramDict
__builtin__.repeatableRepr = repeatableRepr
__builtin__.bpdb = bpdb
__builtin__.u2ascii = u2ascii
__builtin__.unicodeUtf8 = unicodeUtf8
__builtin__.encodedUtf8 = encodedUtf8