"""Undocumented Module""" __all__ = ['unique', 'indent', 'nonRepeatingRandomList', 'writeFsmTree', 'StackTrace', 'traceFunctionCall', 'traceParentCall', 'printThisCall', 'tron', 'trace', 'troff', 'getClassLineage', 'pdir', '_pdir', '_is_variadic', '_has_keywordargs', '_varnames', '_getcode', 'Signature', 'doc', 'adjust', 'difference', 'intersection', 'union', 'sameElements', 'makeList', 'makeTuple', 'list2dict', 'invertDict', 'invertDictLossless', 'uniqueElements', 'disjoint', 'contains', 'replace', 'reduceAngle', 'fitSrcAngle2Dest', 'fitDestAngle2Src', 'closestDestAngle2', 'closestDestAngle', 'binaryRepr', 'profileFunc', 'profiled', 'startProfile', 'printProfile', 'getSetterName', 'getSetter', 'Functor', 'Stack', 'Queue', 'ParamObj', 'POD', 'bound', 'clamp', 'lerp', 'average', 'addListsByValue', 'boolEqual', 'lineupPos', 'formatElapsedSeconds', 'solveQuadratic', 'stackEntryInfo', 'lineInfo', 'callerInfo', 'lineTag', 'findPythonModule', 'describeException', 'mostDerivedLast', 'clampScalar', 'weightedChoice', 'randFloat', 'normalDistrib', 'weightedRand', 'randUint31', 'randInt32', 'randUint32', 'SerialNumGen', 'serialNum', 'uniqueName', 'Enum', 'Singleton', 'SingletonError', 'printListEnum', 'safeRepr', 'fastRepr', 'tagRepr', 'tagWithCaller', 'isDefaultValue', 'set_trace', 'pm', 'ScratchPad', 'Sync', 'RefCounter', 'itype', 'getNumberedTypedString', 'getNumberedTypedSortedString', 'getNumberedTypedSortedStringWithReferrers', 'getNumberedTypedSortedStringWithReferrersGen', 'printNumberedTyped', 'DelayedCall', 'DelayedFunctor', 'FrameDelayedCall', 'SubframeCall', 'ArgumentEater', 'ClassTree', 'getBase', 'HotkeyBreaker','logMethodCalls','GoldenRatio', 'GoldenRectangle', 'pivotScalar', 'rad90', 'rad180', 'rad270', 'rad360', 'nullGen', 'loopGen', 'makeFlywheelGen', 'flywheel', 'choice', 'printStack', 'printReverseStack', 'listToIndex2item', 'listToItem2index', 'pandaBreak','pandaTrace','formatTimeCompact','DestructiveScratchPad', 'deeptype','getProfileResultString','StdoutCapture','StdoutPassthrough', 'Averager', 'getRepository', 'formatTimeExact', 'startSuperLog', 'endSuperLog', 'typeName', 'safeTypeName', 'histogramDict', 'unescapeHtmlString', 'bpdb', ] import types import string import re import math import operator import inspect import os import sys import random import time import gc #if __debug__: import traceback import __builtin__ from StringIO import StringIO import marshal import ElementTree as ET from HTMLParser import HTMLParser import BpDb import unicodedata import bisect __report_indent = 3 from direct.directutil import Verify from panda3d.core import ConfigVariableBool ScalarTypes = (types.FloatType, types.IntType, types.LongType) """ # with one integer positional arg, this uses about 4/5 of the memory of the Functor class below def Functor(function, *args, **kArgs): argsCopy = args[:] def functor(*cArgs, **ckArgs): kArgs.update(ckArgs) return function(*(argsCopy + cArgs), **kArgs) return functor """ class Functor: def __init__(self, function, *args, **kargs): assert callable(function), "function should be a callable obj" self._function = function self._args = args self._kargs = kargs if hasattr(self._function, '__name__'): self.__name__ = self._function.__name__ else: self.__name__ = str(itype(self._function)) if hasattr(self._function, '__doc__'): self.__doc__ = self._function.__doc__ else: self.__doc__ = self.__name__ def destroy(self): del self._function del self._args del self._kargs del self.__name__ del self.__doc__ def _do__call__(self, *args, **kargs): _kargs = self._kargs.copy() _kargs.update(kargs) return self._function(*(self._args + args), **_kargs) # this method is used in place of __call__ if we are recording creation stacks def _exceptionLoggedCreationStack__call__(self, *args, **kargs): try: return self._do__call__(*args, **kargs) except Exception, e: print '-->Functor creation stack (%s): %s' % ( self.__name__, self.getCreationStackTraceCompactStr()) raise __call__ = _do__call__ def __repr__(self): s = 'Functor(%s' % self._function.__name__ for arg in self._args: try: argStr = repr(arg) except: argStr = 'bad repr: %s' % arg.__class__ s += ', %s' % argStr for karg, value in self._kargs.items(): s += ', %s=%s' % (karg, repr(value)) s += ')' return s class Stack: def __init__(self): self.__list = [] def push(self, item): self.__list.append(item) def top(self): # return the item on the top of the stack without popping it off return self.__list[-1] def pop(self): return self.__list.pop() def clear(self): self.__list = [] def isEmpty(self): return len(self.__list) == 0 def __len__(self): return len(self.__list) class Queue: # FIFO queue # interface is intentionally identical to Stack (LIFO) def __init__(self): self.__list = [] def push(self, item): self.__list.append(item) def top(self): # return the next item at the front of the queue without popping it off return self.__list[0] def front(self): return self.__list[0] def back(self): return self.__list[-1] def pop(self): return self.__list.pop(0) def clear(self): self.__list = [] def isEmpty(self): return len(self.__list) == 0 def __len__(self): return len(self.__list) if __debug__ and __name__ == '__main__': q = Queue() assert q.isEmpty() q.clear() assert q.isEmpty() q.push(10) assert not q.isEmpty() q.push(20) assert not q.isEmpty() assert len(q) == 2 assert q.front() == 10 assert q.back() == 20 assert q.top() == 10 assert q.top() == 10 assert q.pop() == 10 assert len(q) == 1 assert not q.isEmpty() assert q.pop() == 20 assert len(q) == 0 assert q.isEmpty() def unique(L1, L2): """Return a list containing all items in 'L1' that are not in 'L2'""" L2 = dict([(k, None) for k in L2]) return [item for item in L1 if item not in L2] def indent(stream, numIndents, str): """ Write str to stream with numIndents in front of it """ # To match emacs, instead of a tab character we will use 4 spaces stream.write(' ' * numIndents + str) def nonRepeatingRandomList(vals, max): random.seed(time.time()) #first generate a set of random values valueList=range(max) finalVals=[] for i in range(vals): index=int(random.random()*len(valueList)) finalVals.append(valueList[index]) valueList.remove(valueList[index]) return finalVals def writeFsmTree(instance, indent = 0): if hasattr(instance, 'parentFSM'): writeFsmTree(instance.parentFSM, indent-2) elif hasattr(instance, 'fsm'): name = '' if hasattr(instance.fsm, 'state'): name = instance.fsm.state.name print "%s: %s"%(instance.fsm.name, name) #if __debug__: #RAU accdg to Darren its's ok that StackTrace is not protected by __debug__ # DCR: if somebody ends up using StackTrace in production, either # A) it will be OK because it hardly ever gets called, or # B) it will be easy to track it down (grep for StackTrace) class StackTrace: def __init__(self, label="", start=0, limit=None): """ label is a string (or anything that be be a string) that is printed as part of the trace back. This is just to make it easier to tell what the stack trace is referring to. start is an integer number of stack frames back from the most recent. (This is automatically bumped up by one to skip the __init__ call to the StackTrace). limit is an integer number of stack frames to record (or None for unlimited). """ self.label = label if limit is not None: self.trace = traceback.extract_stack(sys._getframe(1+start), limit=limit) else: self.trace = traceback.extract_stack(sys._getframe(1+start)) def compact(self): r = '' comma = ',' for filename, lineNum, funcName, text in self.trace: r += '%s.%s:%s%s' % (filename[:filename.rfind('.py')][filename.rfind('\\')+1:], funcName, lineNum, comma) if len(r): r = r[:-len(comma)] return r def reverseCompact(self): r = '' comma = ',' for filename, lineNum, funcName, text in self.trace: r = '%s.%s:%s%s%s' % (filename[:filename.rfind('.py')][filename.rfind('\\')+1:], funcName, lineNum, comma, r) if len(r): r = r[:-len(comma)] return r def __str__(self): r = "Debug stack trace of %s (back %s frames):\n"%( self.label, len(self.trace),) for i in traceback.format_list(self.trace): r+=i r+="***** NOTE: This is not a crash. This is a debug stack trace. *****" return r def printStack(): print StackTrace(start=1).compact() return True def printReverseStack(): print StackTrace(start=1).reverseCompact() return True def printVerboseStack(): print StackTrace(start=1) return True #----------------------------------------------------------------------------- def traceFunctionCall(frame): """ return a string that shows the call frame with calling arguments. e.g. foo(x=234, y=135) """ f = frame co = f.f_code dict = f.f_locals n = co.co_argcount if co.co_flags & 4: n = n+1 if co.co_flags & 8: n = n+1 r='' if 'self' in dict: r = '%s.'%(dict['self'].__class__.__name__,) r+="%s("%(f.f_code.co_name,) comma=0 # formatting, whether we should type a comma. for i in range(n): name = co.co_varnames[i] if name=='self': continue if comma: r+=', ' else: # ok, we skipped the first one, the rest get commas: comma=1 r+=name r+='=' if name in dict: v=safeRepr(dict[name]) if len(v)>2000: # r+="" r += (v[:2000] + "...") else: r+=v else: r+="*** undefined ***" return r+')' def traceParentCall(): return traceFunctionCall(sys._getframe(2)) def printThisCall(): print traceFunctionCall(sys._getframe(1)) return 1 # to allow "assert printThisCall()" if __debug__: def lineage(obj, verbose=0, indent=0): """ return instance or class name in as a multiline string. Usage: print lineage(foo) (Based on getClassLineage()) """ r="" if type(obj) == types.ListType: r+=(" "*indent)+"python list\n" elif type(obj) == types.DictionaryType: r+=(" "*indent)+"python dictionary\n" elif type(obj) == types.ModuleType: r+=(" "*indent)+str(obj)+"\n" elif type(obj) == types.InstanceType: r+=lineage(obj.__class__, verbose, indent) elif type(obj) == types.ClassType: r+=(" "*indent) if verbose: r+=obj.__module__+"." r+=obj.__name__+"\n" for c in obj.__bases__: r+=lineage(c, verbose, indent+2) return r def tron(): sys.settrace(trace) def trace(frame, event, arg): if event == 'line': pass elif event == 'call': print traceFunctionCall(sys._getframe(1)) elif event == 'return': print "returning" elif event == 'exception': print "exception" return trace def troff(): sys.settrace(None) #----------------------------------------------------------------------------- def getClassLineage(obj): """ print object inheritance list """ if type(obj) == types.DictionaryType: # Just a dictionary, return dictionary return [obj] elif (type(obj) == types.InstanceType): # Instance, make a list with the instance and its class interitance return [obj] + getClassLineage(obj.__class__) elif ((type(obj) == types.ClassType) or (type(obj) == types.TypeType)): # Class or type, see what it derives from lineage = [obj] for c in obj.__bases__: lineage = lineage + getClassLineage(c) return lineage # New FFI objects are types that are not defined. # but they still act like classes elif hasattr(obj, '__class__'): # Instance, make a list with the instance and its class interitance return [obj] + getClassLineage(obj.__class__) else: # Not what I'm looking for return [] def pdir(obj, str = None, width = None, fTruncate = 1, lineWidth = 75, wantPrivate = 0): # Remove redundant class entries uniqueLineage = [] for l in getClassLineage(obj): if type(l) == types.ClassType: if l in uniqueLineage: break uniqueLineage.append(l) # Pretty print out directory info uniqueLineage.reverse() for obj in uniqueLineage: _pdir(obj, str, width, fTruncate, lineWidth, wantPrivate) print def _pdir(obj, str = None, width = None, fTruncate = 1, lineWidth = 75, wantPrivate = 0): """ Print out a formatted list of members and methods of an instance or class """ def printHeader(name): name = ' ' + name + ' ' length = len(name) if length < 70: padBefore = int((70 - length)/2.0) padAfter = max(0, 70 - length - padBefore) header = '*' * padBefore + name + '*' * padAfter print header print def printInstanceHeader(i, printHeader = printHeader): printHeader(i.__class__.__name__ + ' INSTANCE INFO') def printClassHeader(c, printHeader = printHeader): printHeader(c.__name__ + ' CLASS INFO') def printDictionaryHeader(d, printHeader = printHeader): printHeader('DICTIONARY INFO') # Print Header if type(obj) == types.InstanceType: printInstanceHeader(obj) elif type(obj) == types.ClassType: printClassHeader(obj) elif type (obj) == types.DictionaryType: printDictionaryHeader(obj) # Get dict if type(obj) == types.DictionaryType: dict = obj # FFI objects are builtin types, they have no __dict__ elif not hasattr(obj, '__dict__'): dict = {} else: dict = obj.__dict__ # Adjust width if width: maxWidth = width else: maxWidth = 10 keyWidth = 0 aproposKeys = [] privateKeys = [] remainingKeys = [] for key in dict.keys(): if not width: keyWidth = len(key) if str: if re.search(str, key, re.I): aproposKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth else: if key[:1] == '_': if wantPrivate: privateKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth else: remainingKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth # Sort appropriate keys if str: aproposKeys.sort() else: privateKeys.sort() remainingKeys.sort() # Print out results if wantPrivate: keys = aproposKeys + privateKeys + remainingKeys else: keys = aproposKeys + remainingKeys format = '%-' + repr(maxWidth) + 's' for key in keys: value = dict[key] if callable(value): strvalue = repr(Signature(value)) else: strvalue = repr(value) if fTruncate: # Cut off line (keeping at least 1 char) strvalue = strvalue[:max(1, lineWidth - maxWidth)] print (format % key)[:maxWidth] + '\t' + strvalue # Magic numbers: These are the bit masks in func_code.co_flags that # reveal whether or not the function has a *arg or **kw argument. _POS_LIST = 4 _KEY_DICT = 8 def _is_variadic(function): return function.func_code.co_flags & _POS_LIST def _has_keywordargs(function): return function.func_code.co_flags & _KEY_DICT def _varnames(function): return function.func_code.co_varnames def _getcode(f): """ _getcode(f) This function returns the name and function object of a callable object. """ def method_get(f): return f.__name__, f.im_func def function_get(f): return f.__name__, f def instance_get(f): if hasattr(f, '__call__'): method = f.__call__ if (type(method) == types.MethodType): func = method.im_func else: func = method return ("%s%s" % (f.__class__.__name__, '__call__'), func) else: s = ("Instance %s of class %s does not have a __call__ method" % (f, f.__class__.__name__)) raise TypeError, s def class_get(f): if hasattr(f, '__init__'): return f.__name__, f.__init__.im_func else: return f.__name__, lambda: None codedict = { types.UnboundMethodType: method_get, types.MethodType: method_get, types.FunctionType: function_get, types.InstanceType: instance_get, types.ClassType: class_get, } try: return codedict[type(f)](f) except KeyError: if hasattr(f, '__call__'): # eg, built-in functions and methods # raise ValueError, "type %s not supported yet." % type(f) return f.__name__, None else: raise TypeError, ("object %s of type %s is not callable." % (f, type(f))) class Signature: def __init__(self, func): self.type = type(func) self.name, self.func = _getcode(func) def ordinary_args(self): n = self.func.func_code.co_argcount return _varnames(self.func)[0:n] def special_args(self): n = self.func.func_code.co_argcount x = {} # if _is_variadic(self.func): x['positional'] = _varnames(self.func)[n] if _has_keywordargs(self.func): x['keyword'] = _varnames(self.func)[n+1] elif _has_keywordargs(self.func): x['keyword'] = _varnames(self.func)[n] else: pass return x def full_arglist(self): base = list(self.ordinary_args()) x = self.special_args() if 'positional' in x: base.append(x['positional']) if 'keyword' in x: base.append(x['keyword']) return base def defaults(self): defargs = self.func.func_defaults args = self.ordinary_args() mapping = {} if defargs is not None: for i in range(-1, -(len(defargs)+1), -1): mapping[args[i]] = defargs[i] else: pass return mapping def __repr__(self): if self.func: defaults = self.defaults() specials = self.special_args() l = [] for arg in self.ordinary_args(): if arg in defaults: l.append(arg + '=' + str(defaults[arg])) else: l.append(arg) if 'positional' in specials: l.append('*' + specials['positional']) if 'keyword' in specials: l.append('**' + specials['keyword']) return "%s(%s)" % (self.name, ', '.join(l)) else: return "%s(?)" % self.name def doc(obj): if (isinstance(obj, types.MethodType)) or \ (isinstance(obj, types.FunctionType)): print obj.__doc__ def adjust(command = None, dim = 1, parent = None, **kw): """ adjust(command = None, parent = None, **kw) Popup and entry scale to adjust a parameter Accepts any Slider keyword argument. Typical arguments include: command: The one argument command to execute min: The min value of the slider max: The max value of the slider resolution: The resolution of the slider text: The label on the slider These values can be accessed and/or changed after the fact >>> vg = adjust() >>> vg['min'] 0.0 >>> vg['min'] = 10.0 >>> vg['min'] 10.0 """ # Make sure we enable Tk from direct.tkwidgets import Valuator # Set command if specified if command: kw['command'] = lambda x: apply(command, x) if parent is None: kw['title'] = command.__name__ kw['dim'] = dim # Create toplevel if needed if not parent: vg = apply(Valuator.ValuatorGroupPanel, (parent,), kw) else: vg = apply(Valuator.ValuatorGroup, (parent,), kw) vg.pack(expand = 1, fill = 'x') return vg def difference(a, b): """ difference(list, list): """ if not a: return b if not b: return a d = [] for i in a: if (i not in b) and (i not in d): d.append(i) for i in b: if (i not in a) and (i not in d): d.append(i) return d def intersection(a, b): """ intersection(list, list): """ if not a: return [] if not b: return [] d = [] for i in a: if (i in b) and (i not in d): d.append(i) for i in b: if (i in a) and (i not in d): d.append(i) return d def union(a, b): """ union(list, list): """ # Copy a c = a[:] for i in b: if (i not in c): c.append(i) return c def sameElements(a, b): if len(a) != len(b): return 0 for elem in a: if elem not in b: return 0 for elem in b: if elem not in a: return 0 return 1 def makeList(x): """returns x, converted to a list""" if type(x) is types.ListType: return x elif type(x) is types.TupleType: return list(x) else: return [x,] def makeTuple(x): """returns x, converted to a tuple""" if type(x) is types.ListType: return tuple(x) elif type(x) is types.TupleType: return x else: return (x,) def list2dict(L, value=None): """creates dict using elements of list, all assigned to same value""" return dict([(k, value) for k in L]) def listToIndex2item(L): """converts list to dict of list index->list item""" d = {} for i, item in enumerate(L): d[i] = item return d assert listToIndex2item(['a','b']) == {0: 'a', 1: 'b',} def listToItem2index(L): """converts list to dict of list item->list index This is lossy if there are duplicate list items""" d = {} for i, item in enumerate(L): d[item] = i return d assert listToItem2index(['a','b']) == {'a': 0, 'b': 1,} def invertDict(D, lossy=False): """creates a dictionary by 'inverting' D; keys are placed in the new dictionary under their corresponding value in the old dictionary. It is an error if D contains any duplicate values. >>> old = {'key1':1, 'key2':2} >>> invertDict(old) {1: 'key1', 2: 'key2'} """ n = {} for key, value in D.items(): if not lossy and value in n: raise 'duplicate key in invertDict: %s' % value n[value] = key return n def invertDictLossless(D): """similar to invertDict, but values of new dict are lists of keys from old dict. No information is lost. >>> old = {'key1':1, 'key2':2, 'keyA':2} >>> invertDictLossless(old) {1: ['key1'], 2: ['key2', 'keyA']} """ n = {} for key, value in D.items(): n.setdefault(value, []) n[value].append(key) return n def uniqueElements(L): """are all elements of list unique?""" return len(L) == len(list2dict(L)) def disjoint(L1, L2): """returns non-zero if L1 and L2 have no common elements""" used = dict([(k, None) for k in L1]) for k in L2: if k in used: return 0 return 1 def contains(whole, sub): """ Return 1 if whole contains sub, 0 otherwise """ if (whole == sub): return 1 for elem in sub: # The first item you find not in whole, return 0 if elem not in whole: return 0 # If you got here, whole must contain sub return 1 def replace(list, old, new, all=0): """ replace 'old' with 'new' in 'list' if all == 0, replace first occurrence otherwise replace all occurrences returns the number of items replaced """ if old not in list: return 0 if not all: i = list.index(old) list[i] = new return 1 else: numReplaced = 0 for i in xrange(len(list)): if list[i] == old: numReplaced += 1 list[i] = new return numReplaced rad90 = math.pi / 2. rad180 = math.pi rad270 = 1.5 * math.pi rad360 = 2. * math.pi def reduceAngle(deg): """ Reduces an angle (in degrees) to a value in [-180..180) """ return (((deg + 180.) % 360.) - 180.) def fitSrcAngle2Dest(src, dest): """ given a src and destination angle, returns an equivalent src angle that is within [-180..180) of dest examples: fitSrcAngle2Dest(30, 60) == 30 fitSrcAngle2Dest(60, 30) == 60 fitSrcAngle2Dest(0, 180) == 0 fitSrcAngle2Dest(-1, 180) == 359 fitSrcAngle2Dest(-180, 180) == 180 """ return dest + reduceAngle(src - dest) def fitDestAngle2Src(src, dest): """ given a src and destination angle, returns an equivalent dest angle that is within [-180..180) of src examples: fitDestAngle2Src(30, 60) == 60 fitDestAngle2Src(60, 30) == 30 fitDestAngle2Src(0, 180) == -180 fitDestAngle2Src(1, 180) == 180 """ return src + (reduceAngle(dest - src)) def closestDestAngle2(src, dest): # The function above didn't seem to do what I wanted. So I hacked # this one together. I can't really say I understand it. It's more # from impirical observation... GRW diff = src - dest if diff > 180: # if the difference is greater that 180 it's shorter to go the other way return dest - 360 elif diff < -180: # or perhaps the OTHER other way... return dest + 360 else: # otherwise just go to the original destination return dest def closestDestAngle(src, dest): # The function above didn't seem to do what I wanted. So I hacked # this one together. I can't really say I understand it. It's more # from impirical observation... GRW diff = src - dest if diff > 180: # if the difference is greater that 180 it's shorter to go the other way return src - (diff - 360) elif diff < -180: # or perhaps the OTHER other way... return src - (360 + diff) else: # otherwise just go to the original destination return dest def binaryRepr(number, max_length = 32): # This will only work reliably for relatively small numbers. # Increase the value of max_length if you think you're going # to use long integers assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join([repr(digit) for digit in digits]) class StdoutCapture: # redirects stdout to a string def __init__(self): self._oldStdout = sys.stdout sys.stdout = self self._string = '' def destroy(self): sys.stdout = self._oldStdout del self._oldStdout def getString(self): return self._string # internal def write(self, string): self._string = ''.join([self._string, string]) class StdoutPassthrough(StdoutCapture): # like StdoutCapture but also allows output to go through to the OS as normal # internal def write(self, string): self._string = ''.join([self._string, string]) self._oldStdout.write(string) # constant profile defaults PyUtilProfileDefaultFilename = 'profiledata' PyUtilProfileDefaultLines = 80 PyUtilProfileDefaultSorts = ['cumulative', 'time', 'calls'] _ProfileResultStr = '' def getProfileResultString(): # if you called profile with 'log' not set to True, # you can call this function to get the results as # a string global _ProfileResultStr return _ProfileResultStr def profileFunc(callback, name, terse, log=True): global _ProfileResultStr if 'globalProfileFunc' in __builtin__.__dict__: # rats. Python profiler is not re-entrant... base.notify.warning( 'PythonUtil.profileStart(%s): aborted, already profiling %s' #'\nStack Trace:\n%s' % (name, __builtin__.globalProfileFunc, #StackTrace() )) return __builtin__.globalProfileFunc = callback __builtin__.globalProfileResult = [None] prefix = '***** START PROFILE: %s *****' % name if log: print prefix startProfile(cmd='globalProfileResult[0]=globalProfileFunc()', callInfo=(not terse), silent=not log) suffix = '***** END PROFILE: %s *****' % name if log: print suffix else: _ProfileResultStr = '%s\n%s\n%s' % (prefix, _ProfileResultStr, suffix) result = globalProfileResult[0] del __builtin__.__dict__['globalProfileFunc'] del __builtin__.__dict__['globalProfileResult'] return result def profiled(category=None, terse=False): """ decorator for profiling functions turn categories on and off via "want-profile-categoryName 1" e.g. @profiled('particles') def loadParticles(): ... want-profile-particles 1 """ assert type(category) in (types.StringType, types.NoneType), "must provide a category name for @profiled" # allow profiling in published versions """ try: null = not __dev__ except: null = not __debug__ if null: # if we're not in __dev__, just return the function itself. This # results in zero runtime overhead, since decorators are evaluated # at module-load. def nullDecorator(f): return f return nullDecorator """ def profileDecorator(f): def _profiled(*args, **kArgs): name = '(%s) %s from %s' % (category, f.func_name, f.__module__) # showbase might not be loaded yet, so don't use # base.config. Instead, query the ConfigVariableBool. if (category is None) or ConfigVariableBool('want-profile-%s' % category, 0).getValue(): return profileFunc(Functor(f, *args, **kArgs), name, terse) else: return f(*args, **kArgs) _profiled.__doc__ = f.__doc__ return _profiled return profileDecorator # intercept profile-related file operations to avoid disk access movedOpenFuncs = [] movedDumpFuncs = [] movedLoadFuncs = [] profileFilenames = set() profileFilenameList = Stack() profileFilename2file = {} profileFilename2marshalData = {} def _profileOpen(filename, *args, **kArgs): # this is a replacement for the file open() builtin function # for use during profiling, to intercept the file open # operation used by the Python profiler and profile stats # systems if filename in profileFilenames: # if this is a file related to profiling, create an # in-RAM file object if filename not in profileFilename2file: file = StringIO() file._profFilename = filename profileFilename2file[filename] = file else: file = profileFilename2file[filename] else: file = movedOpenFuncs[-1](filename, *args, **kArgs) return file def _profileMarshalDump(data, file): # marshal.dump doesn't work with StringIO objects # simulate it if isinstance(file, StringIO) and hasattr(file, '_profFilename'): if file._profFilename in profileFilenames: profileFilename2marshalData[file._profFilename] = data return None return movedDumpFuncs[-1](data, file) def _profileMarshalLoad(file): # marshal.load doesn't work with StringIO objects # simulate it if isinstance(file, StringIO) and hasattr(file, '_profFilename'): if file._profFilename in profileFilenames: return profileFilename2marshalData[file._profFilename] return movedLoadFuncs[-1](file) def _installProfileCustomFuncs(filename): assert filename not in profileFilenames profileFilenames.add(filename) profileFilenameList.push(filename) movedOpenFuncs.append(__builtin__.open) __builtin__.open = _profileOpen movedDumpFuncs.append(marshal.dump) marshal.dump = _profileMarshalDump movedLoadFuncs.append(marshal.load) marshal.load = _profileMarshalLoad def _getProfileResultFileInfo(filename): return (profileFilename2file.get(filename, None), profileFilename2marshalData.get(filename, None)) def _setProfileResultsFileInfo(filename, info): f, m = info if f: profileFilename2file[filename] = f if m: profileFilename2marshalData[filename] = m def _clearProfileResultFileInfo(filename): profileFilename2file.pop(filename, None) profileFilename2marshalData.pop(filename, None) def _removeProfileCustomFuncs(filename): assert profileFilenameList.top() == filename marshal.load = movedLoadFuncs.pop() marshal.dump = movedDumpFuncs.pop() __builtin__.open = movedOpenFuncs.pop() profileFilenames.remove(filename) profileFilenameList.pop() profileFilename2file.pop(filename, None) # don't let marshalled data pile up profileFilename2marshalData.pop(filename, None) # call this from the prompt, and break back out to the prompt # to stop profiling # # OR to do inline profiling, you must make a globally-visible # function to be profiled, i.e. to profile 'self.load()', do # something like this: # # def func(self=self): # self.load() # import __builtin__ # __builtin__.func = func # PythonUtil.startProfile(cmd='func()', filename='profileData') # del __builtin__.func # def _profileWithoutGarbageLeak(cmd, filename): # The profile module isn't necessarily installed on every Python # installation, so we import it here, instead of in the module # scope. import profile # this is necessary because the profile module creates a memory leak Profile = profile.Profile statement = cmd sort = -1 retVal = None #### COPIED FROM profile.run #### prof = Profile() try: prof = prof.run(statement) except SystemExit: pass if filename is not None: prof.dump_stats(filename) else: #return prof.print_stats(sort) #DCR retVal = prof.print_stats(sort) #DCR ################################# # eliminate the garbage leak del prof.dispatcher return retVal def startProfile(filename=PyUtilProfileDefaultFilename, lines=PyUtilProfileDefaultLines, sorts=PyUtilProfileDefaultSorts, silent=0, callInfo=1, useDisk=False, cmd='run()'): # uniquify the filename to allow multiple processes to profile simultaneously filename = '%s.%s%s' % (filename, randUint31(), randUint31()) if not useDisk: # use a RAM file _installProfileCustomFuncs(filename) _profileWithoutGarbageLeak(cmd, filename) if silent: extractProfile(filename, lines, sorts, callInfo) else: printProfile(filename, lines, sorts, callInfo) if not useDisk: # discard the RAM file _removeProfileCustomFuncs(filename) else: os.remove(filename) # call these to see the results again, as a string or in the log def printProfile(filename=PyUtilProfileDefaultFilename, lines=PyUtilProfileDefaultLines, sorts=PyUtilProfileDefaultSorts, callInfo=1): import pstats s = pstats.Stats(filename) s.strip_dirs() for sort in sorts: s.sort_stats(sort) s.print_stats(lines) if callInfo: s.print_callees(lines) s.print_callers(lines) # same args as printProfile def extractProfile(*args, **kArgs): global _ProfileResultStr # capture print output sc = StdoutCapture() # print the profile output, redirected to the result string printProfile(*args, **kArgs) # make a copy of the print output _ProfileResultStr = sc.getString() # restore stdout to what it was before sc.destroy() def getSetterName(valueName, prefix='set'): # getSetterName('color') -> 'setColor' # getSetterName('color', 'get') -> 'getColor' return '%s%s%s' % (prefix, valueName[0].upper(), valueName[1:]) def getSetter(targetObj, valueName, prefix='set'): # getSetter(smiley, 'pos') -> smiley.setPos return getattr(targetObj, getSetterName(valueName, prefix)) def mostDerivedLast(classList): """pass in list of classes. sorts list in-place, with derived classes appearing after their bases""" class ClassSortKey(object): __slots__ = 'classobj', def __init__(self, classobj): self.classobj = classobj def __lt__(self, other): return issubclass(other.classobj, self.classobj) classList.sort(key=ClassSortKey) """ ParamObj/ParamSet ================= These two classes support you in the definition of a formal set of parameters for an object type. The parameters may be safely queried/set on an object instance at any time, and the object will react to newly-set values immediately. ParamSet & ParamObj also provide a mechanism for atomically setting multiple parameter values before allowing the object to react to any of the new values--useful when two or more parameters are interdependent and there is risk of setting an illegal combination in the process of applying a new set of values. To make use of these classes, derive your object from ParamObj. Then define a 'ParamSet' subclass that derives from the parent class' 'ParamSet' class, and define the object's parameters within its ParamSet class. (see examples below) The ParamObj base class provides 'get' and 'set' functions for each parameter if they are not defined. These default implementations respectively set the parameter value directly on the object, and expect the value to be available in that location for retrieval. Classes that derive from ParamObj can optionally declare a 'get' and 'set' function for each parameter. The setter should simply store the value in a location where the getter can find it; it should not do any further processing based on the new parameter value. Further processing should be implemented in an 'apply' function. The applier function is optional, and there is no default implementation. NOTE: the previous value of a parameter is available inside an apply function as 'self.getPriorValue()' The ParamSet class declaration lists the parameters and defines a default value for each. ParamSet instances represent a complete set of parameter values. A ParamSet instance created with no constructor arguments will contain the default values for each parameter. The defaults may be overriden by passing keyword arguments to the ParamSet's constructor. If a ParamObj instance is passed to the constructor, the ParamSet will extract the object's current parameter values. ParamSet.applyTo(obj) sets all of its parameter values on 'obj'. SETTERS AND APPLIERS ==================== Under normal conditions, a call to a setter function, i.e. cam.setFov(90) will actually result in the following calls being made: cam.setFov(90) cam.applyFov() Calls to several setter functions, i.e. cam.setFov(90) cam.setViewType('cutscene') will result in this call sequence: cam.setFov(90) cam.applyFov() cam.setViewType('cutscene') cam.applyViewType() Suppose that you desire the view type to already be set to 'cutscene' at the time when applyFov() is called. You could reverse the order of the set calls, but suppose that you also want the fov to be set properly at the time when applyViewType() is called. In this case, you can 'lock' the params, i.e. cam.lockParams() cam.setFov(90) cam.setViewType('cutscene') cam.unlockParams() This will result in the following call sequence: cam.setFov(90) cam.setViewType('cutscene') cam.applyFov() cam.applyViewType() NOTE: Currently the order of the apply calls following an unlock is not guaranteed. EXAMPLE CLASSES =============== Here is an example of a class that uses ParamSet/ParamObj to manage its parameters: class Camera(ParamObj): class ParamSet(ParamObj.ParamSet): Params = { 'viewType': 'normal', 'fov': 60, } ... def getViewType(self): return self.viewType def setViewType(self, viewType): self.viewType = viewType def applyViewType(self): if self.viewType == 'normal': ... def getFov(self): return self.fov def setFov(self, fov): self.fov = fov def applyFov(self): base.camera.setFov(self.fov) ... EXAMPLE USAGE ============= cam = Camera() ... # set up for the cutscene savedSettings = cam.ParamSet(cam) cam.setViewType('closeup') cam.setFov(90) ... # cutscene is over, set the camera back savedSettings.applyTo(cam) del savedSettings """ class ParamObj: # abstract base for classes that want to support a formal parameter # set whose values may be queried, changed, 'bulk' changed (defer reaction # to changes until multiple changes have been performed), and # extracted/stored/applied all at once (see documentation above) # ParamSet subclass: container of parameter values. Derived class must # derive a new ParamSet class if they wish to define new params. See # documentation above. class ParamSet: Params = { # base class does not define any parameters, but they would # appear here as 'name': defaultValue, # # WARNING: default values of mutable types that do not copy by # value (dicts, lists etc.) will be shared by all class instances # if default value is callable, it will be called to get actual # default value # # for example: # # class MapArea(ParamObj): # class ParamSet(ParamObj.ParamSet): # Params = { # 'spawnIndices': Functor(list, [1,5,22]), # } # } def __init__(self, *args, **kwArgs): self.__class__._compileDefaultParams() if len(args) == 1 and len(kwArgs) == 0: # extract our params from an existing ParamObj instance obj = args[0] self.paramVals = {} for param in self.getParams(): self.paramVals[param] = getSetter(obj, param, 'get')() else: assert len(args) == 0 if __debug__: for arg in kwArgs.keys(): assert arg in self.getParams() self.paramVals = dict(kwArgs) def getValue(self, param): if param in self.paramVals: return self.paramVals[param] return self._Params[param] def applyTo(self, obj): # Apply our entire set of params to a ParamObj obj.lockParams() for param in self.getParams(): getSetter(obj, param)(self.getValue(param)) obj.unlockParams() def extractFrom(self, obj): # Extract our entire set of params from a ParamObj obj.lockParams() for param in self.getParams(): self.paramVals[param] = getSetter(obj, param, 'get')() obj.unlockParams() @classmethod def getParams(cls): # returns safely-mutable list of param names cls._compileDefaultParams() return cls._Params.keys() @classmethod def getDefaultValue(cls, param): cls._compileDefaultParams() dv = cls._Params[param] if hasattr(dv, '__call__'): dv = dv() return dv @classmethod def _compileDefaultParams(cls): if '_Params' in cls.__dict__: # we've already compiled the defaults for this class return bases = list(cls.__bases__) if object in bases: bases.remove(object) # bring less-derived classes to the front mostDerivedLast(bases) cls._Params = {} for c in (bases + [cls]): # make sure this base has its dict of param defaults c._compileDefaultParams() if 'Params' in c.__dict__: # apply this class' default param values to our dict cls._Params.update(c.Params) def __repr__(self): argStr = '' for param in self.getParams(): argStr += '%s=%s,' % (param, repr(self.getValue(param))) return '%s.%s(%s)' % ( self.__class__.__module__, self.__class__.__name__, argStr) # END PARAMSET SUBCLASS def __init__(self, *args, **kwArgs): assert issubclass(self.ParamSet, ParamObj.ParamSet) # If you pass in a ParamSet obj, its values will be applied to this # object in the constructor. params = None if len(args) == 1 and len(kwArgs) == 0: # if there's one argument, assume that it's a ParamSet params = args[0] elif len(kwArgs) > 0: assert len(args) == 0 # if we've got keyword arguments, make a ParamSet out of them params = self.ParamSet(**kwArgs) self._paramLockRefCount = 0 # these hold the current value of parameters while they are being set to # a new value, to support getPriorValue() self._curParamStack = [] self._priorValuesStack = [] # insert stub funcs for param setters, to handle locked params for param in self.ParamSet.getParams(): # set the default value on the object setattr(self, param, self.ParamSet.getDefaultValue(param)) setterName = getSetterName(param) getterName = getSetterName(param, 'get') # is there a setter defined? if not hasattr(self, setterName): # no; provide the default def defaultSetter(self, value, param=param): #print '%s=%s for %s' % (param, value, id(self)) setattr(self, param, value) self.__class__.__dict__[setterName] = defaultSetter # is there a getter defined? if not hasattr(self, getterName): # no; provide the default. If there is no value set, return # the default def defaultGetter(self, param=param, default=self.ParamSet.getDefaultValue(param)): return getattr(self, param, default) self.__class__.__dict__[getterName] = defaultGetter # have we already installed a setter stub? origSetterName = '%s_ORIG' % (setterName,) if not hasattr(self, origSetterName): # move the original setter aside origSetterFunc = getattr(self.__class__, setterName) setattr(self.__class__, origSetterName, origSetterFunc) """ # if the setter is a direct member of this instance, move the setter # aside if setterName in self.__dict__: self.__dict__[setterName + '_MOVED'] = self.__dict__[setterName] setterFunc = self.__dict__[setterName] """ # install a setter stub that will a) call the real setter and # then the applier, or b) call the setter and queue the # applier, depending on whether our params are locked """ setattr(self, setterName, types.MethodType( Functor(setterStub, param, setterFunc), self, self.__class__)) """ def setterStub(self, value, param=param, origSetterName=origSetterName): # should we apply the value now or should we wait? # if this obj's params are locked, we track which values have # been set, and on unlock, we'll call the applyers for those # values if self._paramLockRefCount > 0: priorValues = self._priorValuesStack[-1] if param not in priorValues: try: priorValue = getSetter(self, param, 'get')() except: priorValue = None priorValues[param] = priorValue self._paramsSet[param] = None getattr(self, origSetterName)(value) else: # prepare for call to getPriorValue try: priorValue = getSetter(self, param, 'get')() except: priorValue = None self._priorValuesStack.append({ param: priorValue, }) getattr(self, origSetterName)(value) # call the applier, if there is one applier = getattr(self, getSetterName(param, 'apply'), None) if applier is not None: self._curParamStack.append(param) applier() self._curParamStack.pop() self._priorValuesStack.pop() if hasattr(self, 'handleParamChange'): self.handleParamChange((param,)) setattr(self.__class__, setterName, setterStub) if params is not None: params.applyTo(self) def destroy(self): """ for param in self.ParamSet.getParams(): setterName = getSetterName(param) self.__dict__[setterName].destroy() del self.__dict__[setterName] """ pass def setDefaultParams(self): # set all the default parameters on ourself self.ParamSet().applyTo(self) def getCurrentParams(self): params = self.ParamSet() params.extractFrom(self) return params def lockParams(self): self._paramLockRefCount += 1 if self._paramLockRefCount == 1: self._handleLockParams() def unlockParams(self): if self._paramLockRefCount > 0: self._paramLockRefCount -= 1 if self._paramLockRefCount == 0: self._handleUnlockParams() def _handleLockParams(self): # this will store the names of the parameters that are modified self._paramsSet = {} # this will store the values of modified params (from prior to # the lock). self._priorValuesStack.append({}) def _handleUnlockParams(self): for param in self._paramsSet: # call the applier, if there is one applier = getattr(self, getSetterName(param, 'apply'), None) if applier is not None: self._curParamStack.append(param) applier() self._curParamStack.pop() self._priorValuesStack.pop() if hasattr(self, 'handleParamChange'): self.handleParamChange(tuple(self._paramsSet.keys())) del self._paramsSet def paramsLocked(self): return self._paramLockRefCount > 0 def getPriorValue(self): # call this within an apply function to find out what the prior value # of the param was return self._priorValuesStack[-1][self._curParamStack[-1]] def __repr__(self): argStr = '' for param in self.ParamSet.getParams(): try: value = getSetter(self, param, 'get')() except: value = '' argStr += '%s=%s,' % (param, repr(value)) return '%s(%s)' % (self.__class__.__name__, argStr) if __debug__ and __name__ == '__main__': class ParamObjTest(ParamObj): class ParamSet(ParamObj.ParamSet): Params = { 'num': 0, } def applyNum(self): self.priorValue = self.getPriorValue() pto = ParamObjTest() assert pto.getNum() == 0 pto.setNum(1) assert pto.priorValue == 0 assert pto.getNum() == 1 pto.lockParams() pto.setNum(2) # make sure applyNum is not called until we call unlockParams assert pto.priorValue == 0 assert pto.getNum() == 2 pto.unlockParams() assert pto.priorValue == 1 assert pto.getNum() == 2 """ POD (Plain Ol' Data) Like ParamObj/ParamSet, but without lock/unlock/getPriorValue and without appliers. Similar to a C++ struct, but with auto-generated setters and getters. Use POD when you want the generated getters and setters of ParamObj, but efficiency is a concern and you don't need the bells and whistles provided by ParamObj. POD.__init__ *MUST* be called. You should NOT define your own data getters and setters. Data values may be read, set, and modified directly. You will see no errors if you define your own getters/setters, but there is no guarantee that they will be called--and they will certainly be bypassed by POD internally. EXAMPLE CLASSES =============== Here is an example of a class heirarchy that uses POD to manage its data: class Enemy(POD): DataSet = { 'faction': 'navy', } class Sailor(Enemy): DataSet = { 'build': HUSKY, 'weapon': Cutlass(scale=.9), } EXAMPLE USAGE ============= s = Sailor(faction='undead', build=SKINNY) # make two copies of s s2 = s.makeCopy() s3 = Sailor(s) # example sets s2.setWeapon(Musket()) s3.build = TALL # example gets faction2 = s2.getFaction() faction3 = s3.faction """ class POD: DataSet = { # base class does not define any data items, but they would # appear here as 'name': defaultValue, # # WARNING: default values of mutable types that do not copy by # value (dicts, lists etc.) will be shared by all class instances. # if default value is callable, it will be called to get actual # default value # # for example: # # class MapData(POD): # DataSet = { # 'spawnIndices': Functor(list, [1,5,22]), # } } def __init__(self, **kwArgs): self.__class__._compileDefaultDataSet() if __debug__: # make sure all of the keyword arguments passed in # are present in our data set for arg in kwArgs.keys(): assert arg in self.getDataNames(), ( "unknown argument for %s: '%s'" % ( self.__class__, arg)) # assign each of our data items directly to self for name in self.getDataNames(): # if a value has been passed in for a data item, use # that value, otherwise use the default value if name in kwArgs: getSetter(self, name)(kwArgs[name]) else: getSetter(self, name)(self.getDefaultValue(name)) def setDefaultValues(self): # set all the default data values on ourself for name in self.getDataNames(): getSetter(self, name)(self.getDefaultValue(name)) # this functionality used to be in the constructor, triggered by a single # positional argument; that was conflicting with POD subclasses that wanted # to define different behavior for themselves when given a positional # constructor argument def copyFrom(self, other, strict=False): # if 'strict' is true, other must have a value for all of our data items # otherwise we'll use the defaults for name in self.getDataNames(): if hasattr(other, getSetterName(name, 'get')): setattr(self, name, getSetter(other, name, 'get')()) else: if strict: raise "object '%s' doesn't have value '%s'" % (other, name) else: setattr(self, name, self.getDefaultValue(name)) # support 'p = POD.POD().copyFrom(other)' syntax return self def makeCopy(self): # returns a duplicate of this object return self.__class__().copyFrom(self) def applyTo(self, obj): # Apply our entire set of data to another POD for name in self.getDataNames(): getSetter(obj, name)(getSetter(self, name, 'get')()) def getValue(self, name): return getSetter(self, name, 'get')() @classmethod def getDataNames(cls): # returns safely-mutable list of datum names cls._compileDefaultDataSet() return cls._DataSet.keys() @classmethod def getDefaultValue(cls, name): cls._compileDefaultDataSet() dv = cls._DataSet[name] # this allows us to create a new mutable object every time we ask # for its default value, i.e. if the default value is dict, this # method will return a new empty dictionary object every time. This # will cause problems if the intent is to store a callable object # as the default value itself; we need a way to specify that the # callable *is* the default value and not a default-value creation # function if hasattr(dv, '__call__'): dv = dv() return dv @classmethod def _compileDefaultDataSet(cls): if '_DataSet' in cls.__dict__: # we've already compiled the defaults for this class return # create setters & getters for this class if 'DataSet' in cls.__dict__: for name in cls.DataSet: setterName = getSetterName(name) if not hasattr(cls, setterName): def defaultSetter(self, value, name=name): setattr(self, name, value) cls.__dict__[setterName] = defaultSetter getterName = getSetterName(name, 'get') if not hasattr(cls, getterName): def defaultGetter(self, name=name): return getattr(self, name) cls.__dict__[getterName] = defaultGetter # this dict will hold all of the aggregated default data values for # this particular class, including values from its base classes cls._DataSet = {} bases = list(cls.__bases__) # process in reverse of inheritance order, so that base classes listed first # will take precedence over later base classes bases.reverse() for curBase in bases: # skip multiple-inheritance base classes that do not derive from POD if issubclass(curBase, POD): # make sure this base has its dict of data defaults curBase._compileDefaultDataSet() # grab all inherited data default values cls._DataSet.update(curBase._DataSet) # pull in our own class' default values if any are specified if 'DataSet' in cls.__dict__: cls._DataSet.update(cls.DataSet) def __repr__(self): argStr = '' for name in self.getDataNames(): argStr += '%s=%s,' % (name, repr(getSetter(self, name, 'get')())) return '%s(%s)' % (self.__class__.__name__, argStr) if __debug__ and __name__ == '__main__': class PODtest(POD): DataSet = { 'foo': dict, } p1 = PODtest() p2 = PODtest() assert hasattr(p1, 'foo') # make sure the getter is working assert p1.getFoo() is p1.foo p1.getFoo()[1] = 2 assert p1.foo[1] == 2 # make sure that each instance gets its own copy of a mutable # data item assert p1.foo is not p2.foo assert len(p1.foo) == 1 assert len(p2.foo) == 0 # make sure the setter is working p2.setFoo({10:20}) assert p2.foo[10] == 20 # make sure modifications to mutable data items don't affect other # instances assert p1.foo[1] == 2 class DerivedPOD(PODtest): DataSet = { 'bar': list, } d1 = DerivedPOD() # make sure that derived instances get their own copy of mutable # data items assert hasattr(d1, 'foo') assert len(d1.foo) == 0 # make sure derived instances get their own items assert hasattr(d1, 'bar') assert len(d1.bar) == 0 def bound(value, bound1, bound2): """ returns value if value is between bound1 and bound2 otherwise returns bound that is closer to value """ if bound1 > bound2: return min(max(value, bound2), bound1) else: return min(max(value, bound1), bound2) clamp = bound def lerp(v0, v1, t): """ returns a value lerped between v0 and v1, according to t t == 0 maps to v0, t == 1 maps to v1 """ return v0 + ((v1 - v0) * t) def getShortestRotation(start, end): """ Given two heading values, return a tuple describing the shortest interval from 'start' to 'end'. This tuple can be used to lerp a camera between two rotations while avoiding the 'spin' problem. """ start, end = start % 360, end % 360 if abs(end - start) > 180: if end < start: end += 360 else: start += 360 return (start, end) def average(*args): """ returns simple average of list of values """ val = 0. for arg in args: val += arg return val / len(args) class Averager: def __init__(self, name): self._name = name self.reset() def reset(self): self._total = 0. self._count = 0 def addValue(self, value): self._total += value self._count += 1 def getAverage(self): return self._total / self._count def getCount(self): return self._count def addListsByValue(a, b): """ returns a new array containing the sums of the two array arguments (c[0] = a[0 + b[0], etc.) """ c = [] for x, y in zip(a, b): c.append(x + y) return c def boolEqual(a, b): """ returns true if a and b are both true or both false. returns false otherwise (a.k.a. xnor -- eXclusive Not OR). """ return (a and b) or not (a or b) def lineupPos(i, num, spacing): """ use to line up a series of 'num' objects, in one dimension, centered around zero 'i' is the index of the object in the lineup 'spacing' is the amount of space between objects in the lineup """ assert num >= 1 assert i >= 0 and i < num pos = float(i) * spacing return pos - ((float(spacing) * (num-1))/2.) def formatElapsedSeconds(seconds): """ Returns a string of the form "mm:ss" or "hh:mm:ss" or "n days", representing the indicated elapsed time in seconds. """ sign = '' if seconds < 0: seconds = -seconds sign = '-' # We use math.floor() instead of casting to an int, so we avoid # problems with numbers that are too large to represent as # type int. seconds = math.floor(seconds) hours = math.floor(seconds / (60 * 60)) if hours > 36: days = math.floor((hours + 12) / 24) return "%s%d days" % (sign, days) seconds -= hours * (60 * 60) minutes = (int)(seconds / 60) seconds -= minutes * 60 if hours != 0: return "%s%d:%02d:%02d" % (sign, hours, minutes, seconds) else: return "%s%d:%02d" % (sign, minutes, seconds) def solveQuadratic(a, b, c): # quadratic equation: ax^2 + bx + c = 0 # quadratic formula: x = [-b +/- sqrt(b^2 - 4ac)] / 2a # returns None, root, or [root1, root2] # a cannot be zero. if a == 0.: return None # calculate the determinant (b^2 - 4ac) D = (b * b) - (4. * a * c) if D < 0: # there are no solutions (sqrt(negative number) is undefined) return None elif D == 0: # only one root return (-b) / (2. * a) else: # OK, there are two roots sqrtD = math.sqrt(D) twoA = 2. * a root1 = ((-b) - sqrtD) / twoA root2 = ((-b) + sqrtD) / twoA return [root1, root2] def stackEntryInfo(depth=0, baseFileName=1): """ returns the sourcefilename, line number, and function name of an entry in the stack. 'depth' is how far back to go in the stack; 0 is the caller of this function, 1 is the function that called the caller of this function, etc. by default, strips off the path of the filename; override with baseFileName returns (fileName, lineNum, funcName) --> (string, int, string) returns (None, None, None) on error """ try: stack = None frame = None try: stack = inspect.stack() # add one to skip the frame associated with this function frame = stack[depth+1] filename = frame[1] if baseFileName: filename = os.path.basename(filename) lineNum = frame[2] funcName = frame[3] result = (filename, lineNum, funcName) finally: del stack del frame except: result = (None, None, None) return result def lineInfo(baseFileName=1): """ returns the sourcefilename, line number, and function name of the code that called this function (answers the question: 'hey lineInfo, where am I in the codebase?') see stackEntryInfo, above, for info on 'baseFileName' and return types """ return stackEntryInfo(1, baseFileName) def callerInfo(baseFileName=1, howFarBack=0): """ returns the sourcefilename, line number, and function name of the caller of the function that called this function (answers the question: 'hey callerInfo, who called me?') see stackEntryInfo, above, for info on 'baseFileName' and return types """ return stackEntryInfo(2+howFarBack, baseFileName) def lineTag(baseFileName=1, verbose=0, separator=':'): """ returns a string containing the sourcefilename and line number of the code that called this function (equivalent to lineInfo, above, with different return type) see stackEntryInfo, above, for info on 'baseFileName' if 'verbose' is false, returns a compact string of the form 'fileName:lineNum:funcName' if 'verbose' is true, returns a longer string that matches the format of Python stack trace dumps returns empty string on error """ fileName, lineNum, funcName = callerInfo(baseFileName) if fileName is None: return '' if verbose: return 'File "%s", line %s, in %s' % (fileName, lineNum, funcName) else: return '%s%s%s%s%s' % (fileName, separator, lineNum, separator, funcName) def findPythonModule(module): # Look along the python load path for the indicated filename. # Returns the located pathname, or None if the filename is not # found. filename = module + '.py' for dir in sys.path: pathname = os.path.join(dir, filename) if os.path.exists(pathname): return pathname return None def describeException(backTrace = 4): # When called in an exception handler, returns a string describing # the current exception. def byteOffsetToLineno(code, byte): # Returns the source line number corresponding to the given byte # offset into the indicated Python code module. import array lnotab = array.array('B', code.co_lnotab) line = code.co_firstlineno for i in range(0, len(lnotab), 2): byte -= lnotab[i] if byte <= 0: return line line += lnotab[i+1] return line infoArr = sys.exc_info() exception = infoArr[0] exceptionName = getattr(exception, '__name__', None) extraInfo = infoArr[1] trace = infoArr[2] stack = [] while trace.tb_next: # We need to call byteOffsetToLineno to determine the true # line number at which the exception occurred, even though we # have both trace.tb_lineno and frame.f_lineno, which return # the correct line number only in non-optimized mode. frame = trace.tb_frame module = frame.f_globals.get('__name__', None) lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti) stack.append("%s:%s, " % (module, lineno)) trace = trace.tb_next frame = trace.tb_frame module = frame.f_globals.get('__name__', None) lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti) stack.append("%s:%s, " % (module, lineno)) description = "" for i in range(len(stack) - 1, max(len(stack) - backTrace, 0) - 1, -1): description += stack[i] description += "%s: %s" % (exceptionName, extraInfo) return description def clampScalar(value, a, b): # calling this ought to be faster than calling both min and max if a < b: if value < a: return a elif value > b: return b else: return value else: if value < b: return b elif value > a: return a else: return value def pivotScalar(scalar, pivot): # reflect scalar about pivot; see tests below return pivot + (pivot - scalar) if __debug__ and __name__ == '__main__': assert pivotScalar(1, 0) == -1 assert pivotScalar(-1, 0) == 1 assert pivotScalar(3, 5) == 7 assert pivotScalar(10, 1) == -8 def weightedChoice(choiceList, rng=random.random, sum=None): """given a list of (weight, item) pairs, chooses an item based on the weights. rng must return 0..1. if you happen to have the sum of the weights, pass it in 'sum'.""" # TODO: add support for dicts if sum is None: sum = 0. for weight, item in choiceList: sum += weight rand = rng() accum = rand * sum for weight, item in choiceList: accum -= weight if accum <= 0.: return item # rand is ~1., and floating-point error prevented accum from hitting 0. # Or you passed in a 'sum' that was was too large. # Return the last item. return item def randFloat(a, b=0., rng=random.random): """returns a random float in [a, b] call with single argument to generate random float between arg and zero """ return lerp(a, b, rng()) def normalDistrib(a, b, gauss=random.gauss): """ NOTE: assumes a < b Returns random number between a and b, using gaussian distribution, with mean=avg(a, b), and a standard deviation that fits ~99.7% of the curve between a and b. For ease of use, outlying results are re-computed until result is in [a, b] This should fit the remaining .3% of the curve that lies outside [a, b] uniformly onto the curve inside [a, b] ------------------------------------------------------------------------ http://www-stat.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html The 68-95-99.7% Rule ==================== All normal density curves satisfy the following property which is often referred to as the Empirical Rule: 68% of the observations fall within 1 standard deviation of the mean. 95% of the observations fall within 2 standard deviations of the mean. 99.7% of the observations fall within 3 standard deviations of the mean. Thus, for a normal distribution, almost all values lie within 3 standard deviations of the mean. ------------------------------------------------------------------------ In calculating our standard deviation, we divide (b-a) by 6, since the 99.7% figure includes 3 standard deviations _on_either_side_ of the mean. """ while True: r = gauss((a+b)*.5, (b-a)/6.) if (r >= a) and (r <= b): return r def weightedRand(valDict, rng=random.random): """ pass in a dictionary with a selection -> weight mapping. Eg. {"Choice 1": 10, "Choice 2": 30, "bear": 100} -Weights need not add up to any particular value. -The actual selection will be returned. """ selections = valDict.keys() weights = valDict.values() totalWeight = 0 for weight in weights: totalWeight += weight # get a random value between 0 and the total of the weights randomWeight = rng() * totalWeight # find the index that corresponds with this weight for i in range(len(weights)): totalWeight -= weights[i] if totalWeight <= randomWeight: return selections[i] assert True, "Should never get here" return selections[-1] def randUint31(rng=random.random): """returns a random integer in [0..2^31). rng must return float in [0..1]""" return int(rng() * 0x7FFFFFFF) def randInt32(rng=random.random): """returns a random integer in [-2147483648..2147483647]. rng must return float in [0..1] """ i = int(rng() * 0x7FFFFFFF) if rng() < .5: i *= -1 return i def randUint32(rng=random.random): """returns a random integer in [0..2^32). rng must return float in [0..1]""" return long(rng() * 0xFFFFFFFFL) class SerialNumGen: """generates serial numbers""" def __init__(self, start=None): if start is None: start = 0 self.__counter = start-1 def next(self): self.__counter += 1 return self.__counter class SerialMaskedGen(SerialNumGen): def __init__(self, mask, start=None): self._mask = mask SerialNumGen.__init__(self, start) def next(self): v = SerialNumGen.next(self) return v & self._mask _serialGen = SerialNumGen() def serialNum(): global _serialGen return _serialGen.next() def uniqueName(name): global _serialGen return '%s-%s' % (name, _serialGen.next()) class EnumIter: def __init__(self, enum): self._values = enum._stringTable.keys() self._index = 0 def __iter__(self): return self def next(self): if self._index >= len(self._values): raise StopIteration self._index += 1 return self._values[self._index-1] class Enum: """Pass in list of strings or string of comma-separated strings. Items are accessible as instance.item, and are assigned unique, increasing integer values. Pass in integer for 'start' to override starting value. Example: >>> colors = Enum('red, green, blue') >>> colors.red 0 >>> colors.green 1 >>> colors.blue 2 >>> colors.getString(colors.red) 'red' """ if __debug__: # chars that cannot appear within an item string. InvalidChars = string.whitespace def _checkValidIdentifier(item): invalidChars = string.whitespace+string.punctuation invalidChars = invalidChars.replace('_','') invalidFirstChars = invalidChars+string.digits if item[0] in invalidFirstChars: raise SyntaxError, ("Enum '%s' contains invalid first char" % item) if not disjoint(item, invalidChars): for char in item: if char in invalidChars: raise SyntaxError, ( "Enum\n'%s'\ncontains illegal char '%s'" % (item, char)) return 1 _checkValidIdentifier = staticmethod(_checkValidIdentifier) def __init__(self, items, start=0): if type(items) == types.StringType: items = items.split(',') self._stringTable = {} # make sure we don't overwrite an existing element of the class assert self._checkExistingMembers(items) assert uniqueElements(items) i = start for item in items: # remove leading/trailing whitespace item = string.strip(item) # is there anything left? if len(item) == 0: continue # make sure there are no invalid characters assert Enum._checkValidIdentifier(item) self.__dict__[item] = i self._stringTable[i] = item i += 1 def __iter__(self): return EnumIter(self) def hasString(self, string): return string in set(self._stringTable.values()) def fromString(self, string): if self.hasString(string): return self.__dict__[string] # throw an error {}[string] def getString(self, value): return self._stringTable[value] def __contains__(self, value): return value in self._stringTable def __len__(self): return len(self._stringTable) def copyTo(self, obj): # copies all members onto obj for name, value in self._stringTable: setattr(obj, name, value) if __debug__: def _checkExistingMembers(self, items): for item in items: if hasattr(self, item): return 0 return 1 ############################################################ # class: Singleton # Purpose: This provides a base metaclass for all classes # that require one and only one instance. # # Example: class mySingleton: # __metaclass__ = PythonUtil.Singleton # def __init__(self, ...): # ... # # Note: This class is based on Python's New-Style Class # design. An error will occur if a defined class # attemps to inherit from a Classic-Style Class only, # ie: class myClassX: # def __init__(self, ...): # ... # # class myNewClassX(myClassX): # __metaclass__ = PythonUtil.Singleton # def __init__(self, ...): # myClassX.__init__(self, ...) # ... # # This causes problems because myNewClassX is a # New-Style class that inherits from only a # Classic-Style base class. There are two ways # simple ways to resolve this issue. # # First, if possible, make myClassX a # New-Style class by inheriting from object # object. IE: class myClassX(object): # # If for some reason that is not an option, make # myNewClassX inherit from object and myClassX. # IE: class myNewClassX(object, myClassX): ############################################################ class Singleton(type): def __init__(cls, name, bases, dic): super(Singleton, cls).__init__(name, bases, dic) cls.instance=None def __call__(cls, *args, **kw): if cls.instance is None: cls.instance=super(Singleton, cls).__call__(*args, **kw) return cls.instance class SingletonError(ValueError): """ Used to indicate an inappropriate value for a Singleton.""" def printListEnumGen(l): # log each individual item with a number in front of it digits = 0 n = len(l) while n > 0: digits += 1 n //= 10 format = '%0' + '%s' % digits + 'i:%s' for i in range(len(l)): print format % (i, l[i]) yield None def printListEnum(l): for result in printListEnumGen(l): pass # base class for all Panda C++ objects # libdtoolconfig doesn't seem to have this, grab it off of PandaNode dtoolSuperBase = None def _getDtoolSuperBase(): global dtoolSuperBase from pandac.PandaModules import PandaNode dtoolSuperBase = PandaNode('').__class__.__bases__[0].__bases__[0].__bases__[0] assert repr(dtoolSuperBase) == "" \ or repr(dtoolSuperBase) == "" \ or repr(dtoolSuperBase) == "" safeReprNotify = None def _getSafeReprNotify(): global safeReprNotify from direct.directnotify.DirectNotifyGlobal import directNotify safeReprNotify = directNotify.newCategory("safeRepr") return safeReprNotify def safeRepr(obj): global dtoolSuperBase if dtoolSuperBase is None: _getDtoolSuperBase() global safeReprNotify if safeReprNotify is None: _getSafeReprNotify() if isinstance(obj, dtoolSuperBase): # repr of C++ object could crash, particularly if the object has been deleted # log that we're calling repr safeReprNotify.info('calling repr on instance of %s.%s' % (obj.__class__.__module__, obj.__class__.__name__)) sys.stdout.flush() try: return repr(obj) except: return '<** FAILED REPR OF %s instance at %s **>' % (obj.__class__.__name__, hex(id(obj))) def safeReprTypeOnFail(obj): global dtoolSuperBase if dtoolSuperBase is None: _getDtoolSuperBase() global safeReprNotify if safeReprNotify is None: _getSafeReprNotify() if isinstance(obj, dtoolSuperBase): return type(obj) try: return repr(obj) except: return '<** FAILED REPR OF %s instance at %s **>' % (obj.__class__.__name__, hex(id(obj))) def fastRepr(obj, maxLen=200, strFactor=10, _visitedIds=None): """ caps the length of iterable types, so very large objects will print faster. also prevents infinite recursion """ try: if _visitedIds is None: _visitedIds = set() if id(obj) in _visitedIds: return '' % itype(obj) if type(obj) in (types.TupleType, types.ListType): s = '' s += {types.TupleType: '(', types.ListType: '[',}[type(obj)] if maxLen is not None and len(obj) > maxLen: o = obj[:maxLen] ellips = '...' else: o = obj ellips = '' _visitedIds.add(id(obj)) for item in o: s += fastRepr(item, maxLen, _visitedIds=_visitedIds) s += ', ' _visitedIds.remove(id(obj)) s += ellips s += {types.TupleType: ')', types.ListType: ']',}[type(obj)] return s elif type(obj) is types.DictType: s = '{' if maxLen is not None and len(obj) > maxLen: o = obj.keys()[:maxLen] ellips = '...' else: o = obj.keys() ellips = '' _visitedIds.add(id(obj)) for key in o: value = obj[key] s += '%s: %s, ' % (fastRepr(key, maxLen, _visitedIds=_visitedIds), fastRepr(value, maxLen, _visitedIds=_visitedIds)) _visitedIds.remove(id(obj)) s += ellips s += '}' return s elif type(obj) is types.StringType: if maxLen is not None: maxLen *= strFactor if maxLen is not None and len(obj) > maxLen: return safeRepr(obj[:maxLen]) else: return safeRepr(obj) else: r = safeRepr(obj) maxLen *= strFactor if len(r) > maxLen: r = r[:maxLen] return r except: return '<** FAILED REPR OF %s **>' % obj.__class__.__name__ baseLine = {} def baseLineCheck(): global baseLine import gc obj = gc.get_objects() baseLine = {} for i in obj: baseLine[str(itype(i))] = 0 for i in obj: baseLine[str(itype(i))] += 1 def diffSinceBaseLine(): import copy import gc obj = gc.get_objects() since = copy.deepcopy(baseLine) for i in obj: since.setdefault(str(itype(i)), 0) for i in obj: since[str(itype(i))] -= 1 for i in since.keys(): if not since[i]: del since[i] else: since[i] = abs(since[i]) final = [(since[x],x) for x in since] final.sort() final.reverse() for i in final: print i final = [] since = [] # Recursively expand slist's objects # into olist, using seen to track # already processed objects. def _getr(slist, olist, seen): for e in slist: if id(e) in seen: continue seen[id(e)] = None olist.append(e) tl = gc.get_referents(e) if tl: _getr(tl, olist, seen) # The public function. def get_all_objects(): """Return a list of all live Python objects, not including the list itself.""" gcl = gc.get_objects() olist = [] seen = {} # Just in case: seen[id(gcl)] = None seen[id(olist)] = None seen[id(seen)] = None # _getr does the real work. _getr(gcl, olist, seen) return olist def getIdList(): baseList = get_all_objects() idList = {} for i in baseList: idList[id(i)] = i return idList ftype = None def getTree(obj): global ftype if not ftype: ftype = itype(sys._getframe()) objId = id(obj) obj = None idList = getIdList() objList = [objId] objTree = {objId:{}} r_add_chain(objId, objList, objTree[objId], idList, 0 ) return convertTree(objTree, idList) def convertTree(objTree, idList): newTree = {} for key in objTree.keys(): obj = (idList[key],) newTree[obj] = {} r_convertTree(objTree[key], newTree[obj], idList) return newTree def r_convertTree(oldTree, newTree, idList): for key in oldTree.keys(): obj = idList.get(key) if(not obj): continue obj = str(obj)[:100] newTree[obj] = {} r_convertTree(oldTree[key], newTree[obj], idList) def pretty_print(tree): for name in tree.keys(): print name r_pretty_print(tree[name], 0) def r_pretty_print(tree, num): num+=1 for name in tree.keys(): print " "*num,name r_pretty_print(tree[name],num) def r_add_chain(objId, objList, objTree, idList, num): num+=1 obj = idList.get(objId) if(not obj): return refList = gc.get_referrers(obj) for ref in refList: refId = id(ref) if ref == __builtins__: continue if ref == objList: continue if refId in objList: continue if(ref == idList): continue if(itype(ref) == ftype): continue if(itype(ref) == itype(sys)): continue objList.append(refId) objTree[refId] = {} refList = None for refId in objTree: r_add_chain(refId, objList, objTree[refId], idList, num) def tagRepr(obj, tag): """adds a string onto the repr output of an instance""" def reprWithTag(oldRepr, tag, self): return oldRepr() + '::' oldRepr = getattr(obj, '__repr__', None) if oldRepr is None: def stringer(s): return s oldRepr = Functor(stringer, repr(obj)) stringer = None obj.__repr__ = types.MethodType(Functor(reprWithTag, oldRepr, tag), obj, obj.__class__) reprWithTag = None return obj def tagWithCaller(obj): """add info about the caller of the caller""" tagRepr(obj, str(callerInfo(howFarBack=1))) def isDefaultValue(x): return x == type(x)() def notNone(A, B): # returns A if not None, B otherwise if A is None: return B return A def appendStr(obj, st): """adds a string onto the __str__ output of an instance""" def appendedStr(oldStr, st, self): return oldStr() + st oldStr = getattr(obj, '__str__', None) if oldStr is None: def stringer(s): return s oldStr = Functor(stringer, str(obj)) stringer = None obj.__str__ = types.MethodType(Functor(appendedStr, oldStr, st), obj, obj.__class__) appendedStr = None return obj # convenience shortcuts for __dev__ debugging # we don't have the __dev__ flag at this point try: import pdb set_trace = pdb.set_trace # set_trace that can be asserted def setTrace(): set_trace() return True pm = pdb.pm except: # we're in production, there is no pdb module. assign these to something so that the # __builtin__ exports will work # references in the code should either be if __dev__'d or asserted set_trace = None setTrace = None pm = None class ScratchPad: """empty class to stick values onto""" def __init__(self, **kArgs): for key, value in kArgs.iteritems(): setattr(self, key, value) self._keys = set(kArgs.keys()) def add(self, **kArgs): for key, value in kArgs.iteritems(): setattr(self, key, value) self._keys.update(kArgs.keys()) def destroy(self): for key in self._keys: delattr(self, key) # allow dict [] syntax def __getitem__(self, itemName): return getattr(self, itemName) def get(self, itemName, default=None): return getattr(self, itemName, default) # allow 'in' def __contains__(self, itemName): return itemName in self._keys class DestructiveScratchPad(ScratchPad): # automatically calls destroy() on elements passed to __init__ def add(self, **kArgs): for key, value in kArgs.iteritems(): if hasattr(self, key): getattr(self, key).destroy() setattr(self, key, value) self._keys.update(kArgs.keys()) def destroy(self): for key in self._keys: getattr(self, key).destroy() ScratchPad.destroy(self) class Sync: _SeriesGen = SerialNumGen() def __init__(self, name, other=None): self._name = name if other is None: self._series = self._SeriesGen.next() self._value = 0 else: self._series = other._series self._value = other._value def invalidate(self): self._value = None def change(self): self._value += 1 def sync(self, other): if (self._series != other._series) or (self._value != other._value): self._series = other._series self._value = other._value return True else: return False def isSynced(self, other): return ((self._series == other._series) and (self._value == other._value)) def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._name, self._series, self._value) class RefCounter: def __init__(self, byId=False): self._byId = byId self._refCounts = {} def _getKey(self, item): if self._byId: key = id(item) else: key = item def inc(self, item): key = self._getKey(item) self._refCounts.setdefault(key, 0) self._refCounts[key] += 1 def dec(self, item): """returns True if ref count has hit zero""" key = self._getKey(item) self._refCounts[key] -= 1 result = False if self._refCounts[key] == 0: result = True del self._refCounts[key] return result def itype(obj): # version of type that gives more complete information about instance types global dtoolSuperBase t = type(obj) if t is types.InstanceType: return '%s of >' % (repr(types.InstanceType)[:-1], str(obj.__class__)) else: # C++ object instances appear to be types via type() # check if this is a C++ object if dtoolSuperBase is None: _getDtoolSuperBase() if isinstance(obj, dtoolSuperBase): return '%s of %s>' % (repr(types.InstanceType)[:-1], str(obj.__class__)) return t def deeptype(obj, maxLen=100, _visitedIds=None): if _visitedIds is None: _visitedIds = set() if id(obj) in _visitedIds: return '' % itype(obj) t = type(obj) if t in (types.TupleType, types.ListType): s = '' s += {types.TupleType: '(', types.ListType: '[',}[type(obj)] if maxLen is not None and len(obj) > maxLen: o = obj[:maxLen] ellips = '...' else: o = obj ellips = '' _visitedIds.add(id(obj)) for item in o: s += deeptype(item, maxLen, _visitedIds=_visitedIds) s += ', ' _visitedIds.remove(id(obj)) s += ellips s += {types.TupleType: ')', types.ListType: ']',}[type(obj)] return s elif type(obj) is types.DictType: s = '{' if maxLen is not None and len(obj) > maxLen: o = obj.keys()[:maxLen] ellips = '...' else: o = obj.keys() ellips = '' _visitedIds.add(id(obj)) for key in o: value = obj[key] s += '%s: %s, ' % (deeptype(key, maxLen, _visitedIds=_visitedIds), deeptype(value, maxLen, _visitedIds=_visitedIds)) _visitedIds.remove(id(obj)) s += ellips s += '}' return s else: return str(itype(obj)) def getNumberedTypedString(items, maxLen=5000, numPrefix=''): """get a string that has each item of the list on its own line, and each item is numbered on the left from zero""" digits = 0 n = len(items) while n > 0: digits += 1 n //= 10 digits = digits format = numPrefix + '%0' + '%s' % digits + 'i:%s \t%s' first = True s = '' snip = '' for i in xrange(len(items)): if not first: s += '\n' first = False objStr = fastRepr(items[i]) if len(objStr) > maxLen: objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip) s += format % (i, itype(items[i]), objStr) return s def getNumberedTypedSortedString(items, maxLen=5000, numPrefix=''): """get a string that has each item of the list on its own line, the items are stringwise-sorted, and each item is numbered on the left from zero""" digits = 0 n = len(items) while n > 0: digits += 1 n //= 10 digits = digits format = numPrefix + '%0' + '%s' % digits + 'i:%s \t%s' snip = '' strs = [] for item in items: objStr = fastRepr(item) if len(objStr) > maxLen: objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip) strs.append(objStr) first = True s = '' strs.sort() for i in xrange(len(strs)): if not first: s += '\n' first = False objStr = strs[i] s += format % (i, itype(items[i]), strs[i]) return s def getNumberedTypedSortedStringWithReferrersGen(items, maxLen=10000, numPrefix=''): """get a string that has each item of the list on its own line, the items are stringwise-sorted, the object's referrers are shown, and each item is numbered on the left from zero""" digits = 0 n = len(items) while n > 0: digits += 1 n //= 10 digits = digits format = numPrefix + '%0' + '%s' % digits + 'i:%s @ %s \t%s' snip = '' strs = [] for item in items: strs.append(fastRepr(item)) strs.sort() for i in xrange(len(strs)): item = items[i] objStr = strs[i] objStr += ', \tREFERRERS=[' referrers = gc.get_referrers(item) for ref in referrers: objStr += '%s@%s, ' % (itype(ref), id(ref)) objStr += ']' if len(objStr) > maxLen: objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip) yield format % (i, itype(items[i]), id(items[i]), objStr) def getNumberedTypedSortedStringWithReferrers(items, maxLen=10000, numPrefix=''): """get a string that has each item of the list on its own line, the items are stringwise-sorted, the object's referrers are shown, and each item is numbered on the left from zero""" s = '' for line in getNumberedTypedSortedStringWithReferrersGen(items, maxLen, numPrefix): s += '%s\n' % line return s def printNumberedTyped(items, maxLen=5000): """print out each item of the list on its own line, with each item numbered on the left from zero""" digits = 0 n = len(items) while n > 0: digits += 1 n //= 10 digits = digits format = '%0' + '%s' % digits + 'i:%s \t%s' for i in xrange(len(items)): objStr = fastRepr(items[i]) if len(objStr) > maxLen: snip = '' objStr = '%s%s' % (objStr[:(maxLen-len(snip))], snip) print format % (i, itype(items[i]), objStr) def printNumberedTypesGen(items, maxLen=5000): digits = 0 n = len(items) while n > 0: digits += 1 n //= 10 digits = digits format = '%0' + '%s' % digits + 'i:%s' for i in xrange(len(items)): print format % (i, itype(items[i])) yield None def printNumberedTypes(items, maxLen=5000): """print out the type of each item of the list on its own line, with each item numbered on the left from zero""" for result in printNumberedTypesGen(items, maxLen): yield result class DelayedCall: """ calls a func after a specified delay """ def __init__(self, func, name=None, delay=None): if name is None: name = 'anonymous' if delay is None: delay = .01 self._func = func self._taskName = 'DelayedCallback-%s' % name self._delay = delay self._finished = False self._addDoLater() def destroy(self): self._finished = True self._removeDoLater() def finish(self): if not self._finished: self._doCallback() self.destroy() def _addDoLater(self): taskMgr.doMethodLater(self._delay, self._doCallback, self._taskName) def _removeDoLater(self): taskMgr.remove(self._taskName) def _doCallback(self, task): self._finished = True func = self._func del self._func func() class FrameDelayedCall: """ calls a func after N frames """ def __init__(self, name, callback, frames=None, cancelFunc=None): # checkFunc is optional; called every frame, if returns True, FrameDelay is cancelled # and callback is not called if frames is None: frames = 1 self._name = name self._frames = frames self._callback = callback self._cancelFunc = cancelFunc self._taskName = uniqueName('%s-%s' % (self.__class__.__name__, self._name)) self._finished = False self._startTask() def destroy(self): self._finished = True self._stopTask() def finish(self): if not self._finished: self._finished = True self._callback() self.destroy() def _startTask(self): taskMgr.add(self._frameTask, self._taskName) self._counter = 0 def _stopTask(self): taskMgr.remove(self._taskName) def _frameTask(self, task): if self._cancelFunc and self._cancelFunc(): self.destroy() return task.done self._counter += 1 if self._counter >= self._frames: self.finish() return task.done return task.cont class DelayedFunctor: """ Waits for this object to be called, then calls supplied functor after a delay. Effectively inserts a time delay between the caller and the functor. """ def __init__(self, functor, name=None, delay=None): self._functor = functor self._name = name # FunctionInterval requires __name__ self.__name__ = self._name self._delay = delay def _callFunctor(self): cb = Functor(self._functor, *self._args, **self._kwArgs) del self._functor del self._name del self._delay del self._args del self._kwArgs del self._delayedCall del self.__name__ cb() def __call__(self, *args, **kwArgs): self._args = args self._kwArgs = kwArgs self._delayedCall = DelayedCall(self._callFunctor, self._name, self._delay) class SubframeCall: """Calls a callback at a specific time during the frame using the task system""" def __init__(self, functor, taskPriority, name=None): self._functor = functor self._name = name self._taskName = uniqueName('SubframeCall-%s' % self._name) taskMgr.add(self._doCallback, self._taskName, priority=taskPriority) def _doCallback(self, task): functor = self._functor del self._functor functor() del self._name self._taskName = None return task.done def cleanup(self): if (self._taskName): taskMgr.remove(self._taskName) self._taskName = None class ArgumentEater: def __init__(self, numToEat, func): self._numToEat = numToEat self._func = func def destroy(self): del self._func def __call__(self, *args, **kwArgs): self._func(*args[self._numToEat:], **kwArgs) class ClassTree: def __init__(self, instanceOrClass): if type(instanceOrClass) in (types.ClassType, types.TypeType): cls = instanceOrClass else: cls = instanceOrClass.__class__ self._cls = cls self._bases = [] for base in self._cls.__bases__: if base not in (types.ObjectType, types.TypeType): self._bases.append(ClassTree(base)) def getAllClasses(self): # returns set of this class and all base classes classes = set() classes.add(self._cls) for base in self._bases: classes.update(base.getAllClasses()) return classes def _getStr(self, indent=None, clsLeftAtIndent=None): # indent is how far to the right to indent (i.e. how many levels # deep in the hierarchy from the most-derived) # # clsLeftAtIndent is an array of # of classes left to be # printed at each level of the hierarchy; most-derived is # at index 0 if indent is None: indent = 0 clsLeftAtIndent = [1] s = '' if (indent > 1): for i in range(1, indent): # if we have not printed all base classes at # this indent level, keep printing the vertical # column if clsLeftAtIndent[i] > 0: s += ' |' else: s += ' ' if (indent > 0): s += ' +' s += self._cls.__name__ clsLeftAtIndent[indent] -= 1 """ ### show the module to the right of the class name moduleIndent = 48 if len(s) >= moduleIndent: moduleIndent = (len(s) % 4) + 4 padding = moduleIndent - len(s) s += padding * ' ' s += self._cls.__module__ ### """ if len(self._bases): newList = list(clsLeftAtIndent) newList.append(len(self._bases)) bases = self._bases # print classes with fewer bases first bases.sort(lambda x,y: len(x._bases)-len(y._bases)) for base in bases: s += '\n%s' % base._getStr(indent+1, newList) return s def __repr__(self): return self._getStr() class PStatScope: collectors = {} def __init__(self, level = None): self.levels = [] if level: self.levels.append(level) def copy(self, push = None): c = PStatScope() c.levels = self.levels[:] if push: c.push(push) return c def __repr__(self): return 'PStatScope - \'%s\'' % (self,) def __str__(self): return ':'.join(self.levels) def push(self, level): self.levels.append(level.replace('_','')) def pop(self): return self.levels.pop() def start(self, push = None): if push: self.push(push) pass self.getCollector().start() def stop(self, pop = False): self.getCollector().stop() if pop: self.pop() def getCollector(self): label = str(self) if label not in self.collectors: from pandac.PandaModules import PStatCollector self.collectors[label] = PStatCollector(label) pass # print ' ',self.collectors[label] return self.collectors[label] def pstatcollect(scope, level = None): def decorator(f): return f try: if not (__dev__ or config.GetBool('force-pstatcollect', 0)) or \ not scope: return decorator def decorator(f): def wrap(*args, **kw): scope.start(push = (level or f.__name__)) val = f(*args, **kw) scope.stop(pop = True) return val return wrap pass except: pass return decorator __report_indent = 0 def report(types = [], prefix = '', xform = None, notifyFunc = None, dConfigParam = []): """ This is a decorator generating function. Use is similar to a @decorator, except you must be sure to call it as a function. It actually returns the decorator which is then used to transform your decorated function. Confusing at first, I know. Decoration occurs at function definition time. If __dev__ is not defined, or resolves to False, this function has no effect and no wrapping/transform occurs. So in production, it's as if the report has been asserted out. Parameters:: types : A subset list of ['timeStamp', 'frameCount', 'avLocation'] This allows you to specify certain useful bits of info. module: Prints the module that this report statement can be found in. args: Prints the arguments as they were passed to this function. timeStamp: Adds the current frame time to the output. deltaStamp: Adds the current AI synched frame time to the output frameCount: Adds the current frame count to the output. Usually cleaner than the timeStamp output. avLocation: Adds the localAvatar's network location to the output. Useful for interest debugging. interests: Prints the current interest state after the report. stackTrace: Prints a stack trace after the report. prefix: Optional string to prepend to output, just before the function. Allows for easy grepping and is useful when merging AI/Client reports into a single file. xform: Optional callback that accepts a single parameter: argument 0 to the decorated function. (assumed to be 'self') It should return a value to be inserted into the report output string. notifyFunc: A notify function such as info, debug, warning, etc. By default the report will be printed to stdout. This will allow you send the report to a designated 'notify' output. dConfigParam: A list of Config.prc string variables. By default the report will always print. If you specify this param, it will only print if one of the specified config strings resolve to True. """ def indent(str): global __report_indent return ' '*__report_indent+str def decorator(f): return f try: if not (__dev__ or config.GetBool('force-reports', 0)): return decorator # determine whether we should use the decorator # based on the value of dConfigParam. dConfigParamList = [] doPrint = False if not dConfigParam: doPrint = True else: if not isinstance(dConfigParam, (list,tuple)): dConfigParams = (dConfigParam,) else: dConfigParams = dConfigParam dConfigParamList = [param for param in dConfigParams \ if config.GetBool('want-%s-report' % (param,), 0)] doPrint = bool(dConfigParamList) pass if not doPrint: return decorator # Determine any prefixes defined in our Config.prc. if prefix: prefixes = set([prefix]) else: prefixes = set() pass for param in dConfigParamList: prefix = config.GetString('prefix-%s-report' % (param,), '') if prefix: prefixes.add(prefix) pass pass except NameError,e: return decorator from direct.distributed.ClockDelta import globalClockDelta def decorator(f): def wrap(*args,**kwargs): if args: rArgs = [args[0].__class__.__name__ + ', '] else: rArgs = [] if 'args' in types: rArgs += [repr(x)+', ' for x in args[1:]] + \ [ x + ' = ' + '%s, ' % repr(y) for x,y in kwargs.items()] if not rArgs: rArgs = '()' else: rArgs = '(' + reduce(str.__add__,rArgs)[:-2] + ')' outStr = '%s%s' % (f.func_name, rArgs) # Insert prefix place holder, if needed if prefixes: outStr = '%%s %s' % (outStr,) if 'module' in types: outStr = '%s {M:%s}' % (outStr, f.__module__.split('.')[-1]) if 'frameCount' in types: outStr = '%-8d : %s' % (globalClock.getFrameCount(), outStr) if 'timeStamp' in types: outStr = '%-8.3f : %s' % (globalClock.getFrameTime(), outStr) if 'deltaStamp' in types: outStr = '%-8.2f : %s' % (globalClock.getRealTime() - \ globalClockDelta.delta, outStr) if 'avLocation' in types: outStr = '%s : %s' % (outStr, str(localAvatar.getLocation())) if xform: outStr = '%s : %s' % (outStr, xform(args[0])) if prefixes: # This will print the same report once for each prefix for prefix in prefixes: if notifyFunc: notifyFunc(outStr % (prefix,)) else: print indent(outStr % (prefix,)) else: if notifyFunc: notifyFunc(outStr) else: print indent(outStr) if 'interests' in types: base.cr.printInterestSets() if 'stackTrace' in types: print StackTrace() global __report_indent rVal = None try: __report_indent += 1 rVal = f(*args,**kwargs) finally: __report_indent -= 1 if rVal is not None: print indent(' -> '+repr(rVal)) pass pass return rVal wrap.func_name = f.func_name wrap.func_dict = f.func_dict wrap.func_doc = f.func_doc wrap.__module__ = f.__module__ return wrap return decorator def getBase(): try: return base except: return simbase def getRepository(): try: return base.cr except: return simbase.air exceptionLoggedNotify = None def exceptionLogged(append=True): """decorator that outputs the function name and all arguments if an exception passes back through the stack frame if append is true, string is appended to the __str__ output of the exception. if append is false, string is printed to the log directly. If the output will take up many lines, it's recommended to set append to False so that the exception stack is not hidden by the output of this decorator. """ try: null = not __dev__ except: null = not __debug__ if null: # if we're not in __dev__, just return the function itself. This # results in zero runtime overhead, since decorators are evaluated # at module-load. def nullDecorator(f): return f return nullDecorator def _decoratorFunc(f, append=append): global exceptionLoggedNotify if exceptionLoggedNotify is None: from direct.directnotify.DirectNotifyGlobal import directNotify exceptionLoggedNotify = directNotify.newCategory("ExceptionLogged") def _exceptionLogged(*args, **kArgs): try: return f(*args, **kArgs) except Exception, e: try: s = '%s(' % f.func_name for arg in args: s += '%s, ' % arg for key, value in kArgs.items(): s += '%s=%s, ' % (key, value) if len(args) or len(kArgs): s = s[:-2] s += ')' if append: appendStr(e, '\n%s' % s) else: exceptionLoggedNotify.info(s) except: exceptionLoggedNotify.info( '%s: ERROR IN PRINTING' % f.func_name) raise _exceptionLogged.__doc__ = f.__doc__ return _exceptionLogged return _decoratorFunc # class 'decorator' that records the stack at the time of creation # be careful with this, it creates a StackTrace, and that can take a # lot of CPU def recordCreationStack(cls): if not hasattr(cls, '__init__'): raise 'recordCreationStack: class \'%s\' must define __init__' % cls.__name__ cls.__moved_init__ = cls.__init__ def __recordCreationStack_init__(self, *args, **kArgs): self._creationStackTrace = StackTrace(start=1) return self.__moved_init__(*args, **kArgs) def getCreationStackTrace(self): return self._creationStackTrace def getCreationStackTraceCompactStr(self): return self._creationStackTrace.compact() def printCreationStackTrace(self): print self._creationStackTrace cls.__init__ = __recordCreationStack_init__ cls.getCreationStackTrace = getCreationStackTrace cls.getCreationStackTraceCompactStr = getCreationStackTraceCompactStr cls.printCreationStackTrace = printCreationStackTrace return cls # like recordCreationStack but stores the stack as a compact stack list-of-strings # scales well for memory usage def recordCreationStackStr(cls): if not hasattr(cls, '__init__'): raise 'recordCreationStackStr: class \'%s\' must define __init__' % cls.__name__ cls.__moved_init__ = cls.__init__ def __recordCreationStackStr_init__(self, *args, **kArgs): # store as list of strings to conserve memory self._creationStackTraceStrLst = StackTrace(start=1).compact().split(',') return self.__moved_init__(*args, **kArgs) def getCreationStackTraceCompactStr(self): return ','.join(self._creationStackTraceStrLst) def printCreationStackTrace(self): print ','.join(self._creationStackTraceStrLst) cls.__init__ = __recordCreationStackStr_init__ cls.getCreationStackTraceCompactStr = getCreationStackTraceCompactStr cls.printCreationStackTrace = printCreationStackTrace return cls # class 'decorator' that logs all method calls for a particular class def logMethodCalls(cls): if not hasattr(cls, 'notify'): raise 'logMethodCalls: class \'%s\' must have a notify' % cls.__name__ for name in dir(cls): method = getattr(cls, name) if hasattr(method, '__call__'): def getLoggedMethodCall(method): def __logMethodCall__(obj, *args, **kArgs): s = '%s(' % method.__name__ for arg in args: try: argStr = repr(arg) except: argStr = 'bad repr: %s' % arg.__class__ s += '%s, ' % argStr for karg, value in kArgs.items(): s += '%s=%s, ' % (karg, repr(value)) if len(args) or len(kArgs): s = s[:-2] s += ')' obj.notify.info(s) return method(obj, *args, **kArgs) return __logMethodCall__ setattr(cls, name, getLoggedMethodCall(method)) __logMethodCall__ = None return cls # http://en.wikipedia.org/wiki/Golden_ratio GoldenRatio = (1. + math.sqrt(5.)) / 2. class GoldenRectangle: @staticmethod def getLongerEdge(shorter): return shorter * GoldenRatio @staticmethod def getShorterEdge(longer): return longer / GoldenRatio class HotkeyBreaker: def __init__(self,breakKeys = []): from direct.showbase.DirectObject import DirectObject self.do = DirectObject() self.breakKeys = {} if not isinstance(breakKeys, (list,tuple)): breakKeys = (breakKeys,) for key in breakKeys: self.addBreakKey(key) def addBreakKey(self,breakKey): if __dev__: self.do.accept(breakKey,self.breakFunc,extraArgs = [breakKey]) def removeBreakKey(self,breakKey): if __dev__: self.do.ignore(breakKey) def breakFunc(self,breakKey): if __dev__: self.breakKeys[breakKey] = True def setBreakPt(self, breakKey = None, persistent = False): if __dev__: if not breakKey: import pdb;pdb.set_trace() return True else: if self.breakKeys.get(breakKey,False): if not persistent: self.breakKeys.pop(breakKey) import pdb;pdb.set_trace() return True return True def clearBreakPt(self, breakKey): if __dev__: return bool(self.breakKeys.pop(breakKey,None)) def nullGen(): # generator that ends immediately if False: # yield that never runs but still exists, making this func a generator yield None def loopGen(l): # generator that yields the items of an iterable object forever def _gen(l): while True: for item in l: yield item gen = _gen(l) # don't leak _gen = None return gen def makeFlywheelGen(objects, countList=None, countFunc=None, scale=None): # iterates and finally yields a flywheel generator object # the number of appearances for each object is controlled by passing in # a list of counts, or a functor that returns a count when called with # an object from the 'objects' list. # if scale is provided, all counts are scaled by the scale value and then int()'ed. def flywheel(index2objectAndCount): # generator to produce a sequence whose elements appear a specific number of times while len(index2objectAndCount): keyList = index2objectAndCount.keys() for key in keyList: if index2objectAndCount[key][1] > 0: yield index2objectAndCount[key][0] index2objectAndCount[key][1] -= 1 if index2objectAndCount[key][1] <= 0: del index2objectAndCount[key] # if we were not given a list of counts, create it by calling countFunc if countList is None: countList = [] for object in objects: yield None countList.append(countFunc(object)) if scale is not None: # scale the counts if we've got a scale factor for i in xrange(len(countList)): yield None if countList[i] > 0: countList[i] = max(1, int(countList[i] * scale)) # create a dict for the flywheel to use during its iteration to efficiently select # the objects for the sequence index2objectAndCount = {} for i in xrange(len(countList)): yield None index2objectAndCount[i] = [objects[i], countList[i]] # create the flywheel generator yield flywheel(index2objectAndCount) def flywheel(*args, **kArgs): # create a flywheel generator # see arguments and comments in flywheelGen above # example usage: """ >>> for i in flywheel([1,2,3], countList=[10, 5, 1]): ... print i, ... 1 2 3 1 2 1 2 1 2 1 2 1 1 1 1 1 """ for flywheel in makeFlywheelGen(*args, **kArgs): pass return flywheel if __debug__ and __name__ == '__main__': f = flywheel(['a','b','c','d'], countList=[11,20,3,4]) obj2count = {} for obj in f: obj2count.setdefault(obj, 0) obj2count[obj] += 1 assert obj2count['a'] == 11 assert obj2count['b'] == 20 assert obj2count['c'] == 3 assert obj2count['d'] == 4 f = flywheel([1,2,3,4], countFunc=lambda x: x*2) obj2count = {} for obj in f: obj2count.setdefault(obj, 0) obj2count[obj] += 1 assert obj2count[1] == 2 assert obj2count[2] == 4 assert obj2count[3] == 6 assert obj2count[4] == 8 f = flywheel([1,2,3,4], countFunc=lambda x: x, scale = 3) obj2count = {} for obj in f: obj2count.setdefault(obj, 0) obj2count[obj] += 1 assert obj2count[1] == 1 * 3 assert obj2count[2] == 2 * 3 assert obj2count[3] == 3 * 3 assert obj2count[4] == 4 * 3 def quickProfile(name="unnamed"): import pstats def profileDecorator(f): if(not config.GetBool("use-profiler",0)): return f def _profiled(*args, **kArgs): # must do this in here because we don't have base/simbase # at the time that PythonUtil is loaded if(not config.GetBool("profile-debug",0)): #dumb timings st=globalClock.getRealTime() f(*args,**kArgs) s=globalClock.getRealTime()-st print "Function %s.%s took %s seconds"%(f.__module__, f.__name__,s) else: import profile as prof, pstats #detailed profile, stored in base.stats under ( if(not hasattr(base,"stats")): base.stats={} if(not base.stats.get(name)): base.stats[name]=[] prof.runctx('f(*args, **kArgs)', {'f':f,'args':args,'kArgs':kArgs},None,"t.prof") s=pstats.Stats("t.prof") #p=hotshot.Profile("t.prof") #p.runctx('f(*args, **kArgs)', {'f':f,'args':args,'kArgs':kArgs},None) #s = hotshot.stats.load("t.prof") s.strip_dirs() s.sort_stats("cumulative") base.stats[name].append(s) _profiled.__doc__ = f.__doc__ return _profiled return profileDecorator def getTotalAnnounceTime(): td=0 for objs in base.stats.values(): for stat in objs: td+=getAnnounceGenerateTime(stat) return td def getAnnounceGenerateTime(stat): val=0 stats=stat.stats for i in stats.keys(): if(i[2]=="announceGenerate"): newVal=stats[i][3] if(newVal>val): val=newVal return val def choice(condition, ifTrue, ifFalse): # equivalent of C++ (condition ? ifTrue : ifFalse) if condition: return ifTrue else: return ifFalse class MiniLog: def __init__(self, name): self.indent = 1 self.name = name self.lines = [] def __str__(self): return '%s\nMiniLog: %s\n%s\n%s\n%s' % \ ('*'*50, self.name, '-'*50, '\n'.join(self.lines), '*'*50) def enterFunction(self, funcName, *args, **kw): rArgs = [repr(x)+', ' for x in args] + \ [ x + ' = ' + '%s, ' % repr(y) for x,y in kw.items()] if not rArgs: rArgs = '()' else: rArgs = '(' + reduce(str.__add__,rArgs)[:-2] + ')' line = '%s%s' % (funcName, rArgs) self.appendFunctionCall(line) self.indent += 1 return line def exitFunction(self): self.indent -= 1 return self.indent def appendFunctionCall(self, line): self.lines.append(' '*(self.indent*2) + line) return line def appendLine(self, line): self.lines.append(' '*(self.indent*2) + '<< ' + line + ' >>') return line def flush(self): outStr = str(self) self.indent = 0 self.lines = [] return outStr class MiniLogSentry: def __init__(self, log, funcName, *args, **kw): self.log = log if self.log: self.log.enterFunction(funcName, *args, **kw) def __del__(self): if self.log: self.log.exitFunction() del self.log def logBlock(id, msg): print '<< LOGBLOCK(%03d)' % id print str(msg) print '/LOGBLOCK(%03d) >>' % id class HierarchyException(Exception): JOSWILSO = 0 def __init__(self, owner, description): self.owner = owner self.desc = description def __str__(self): return '(%s): %s' % (self.owner, self.desc) def __repr__(self): return 'HierarchyException(%s)' % (self.owner, ) # __dev__ is not defined at import time, call this after it's defined def recordFunctorCreationStacks(): global Functor from pandac.PandaModules import getConfigShowbase config = getConfigShowbase() # off by default, very slow if __dev__ and config.GetBool('record-functor-creation-stacks', 0): if not hasattr(Functor, '_functorCreationStacksRecorded'): Functor = recordCreationStackStr(Functor) Functor._functorCreationStacksRecorded = True Functor.__call__ = Functor._exceptionLoggedCreationStack__call__ def formatTimeCompact(seconds): # returns string in format '1d3h22m43s' result = '' a = int(seconds) seconds = a % 60 a //= 60 if a > 0: minutes = a % 60 a //= 60 if a > 0: hours = a % 24 a //= 24 if a > 0: days = a result += '%sd' % days result += '%sh' % hours result += '%sm' % minutes result += '%ss' % seconds return result if __debug__ and __name__ == '__main__': ftc = formatTimeCompact assert ftc(0) == '0s' assert ftc(1) == '1s' assert ftc(60) == '1m0s' assert ftc(64) == '1m4s' assert ftc(60*60) == '1h0m0s' assert ftc(24*60*60) == '1d0h0m0s' assert ftc(24*60*60 + 2*60*60 + 34*60 + 12) == '1d2h34m12s' del ftc def formatTimeExact(seconds): # like formatTimeCompact but leaves off '0 seconds', '0 minutes' etc. for # times that are e.g. 1 hour, 3 days etc. # returns string in format '1d3h22m43s' result = '' a = int(seconds) seconds = a % 60 a //= 60 if a > 0: minutes = a % 60 a //= 60 if a > 0: hours = a % 24 a //= 24 if a > 0: days = a result += '%sd' % days if hours or minutes or seconds: result += '%sh' % hours if minutes or seconds: result += '%sm' % minutes if seconds or result == '': result += '%ss' % seconds return result if __debug__ and __name__ == '__main__': fte = formatTimeExact assert fte(0) == '0s' assert fte(1) == '1s' assert fte(2) == '2s' assert fte(61) == '1m1s' assert fte(60) == '1m' assert fte(60*60) == '1h' assert fte(24*60*60) == '1d' assert fte((24*60*60) + (2 * 60)) == '1d0h2m' del fte class AlphabetCounter: # object that produces 'A', 'B', 'C', ... 'AA', 'AB', etc. def __init__(self): self._curCounter = ['A'] def next(self): result = ''.join([c for c in self._curCounter]) index = -1 while True: curChar = self._curCounter[index] if curChar is 'Z': nextChar = 'A' carry = True else: nextChar = chr(ord(self._curCounter[index])+1) carry = False self._curCounter[index] = nextChar if carry: if (-index) == len(self._curCounter): self._curCounter = ['A',] + self._curCounter break else: index -= 1 carry = False else: break return result if __debug__ and __name__ == '__main__': def testAlphabetCounter(): tempList = [] ac = AlphabetCounter() for i in xrange(26*3): tempList.append(ac.next()) assert tempList == [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'AA','AB','AC','AD','AE','AF','AG','AH','AI','AJ','AK','AL','AM','AN','AO','AP','AQ','AR','AS','AT','AU','AV','AW','AX','AY','AZ', 'BA','BB','BC','BD','BE','BF','BG','BH','BI','BJ','BK','BL','BM','BN','BO','BP','BQ','BR','BS','BT','BU','BV','BW','BX','BY','BZ',] ac = AlphabetCounter() num = 26 # A-Z num += (26*26) # AA-ZZ num += 26 # AAZ num += 1 # ABA num += 2 # ABC for i in xrange(num): x = ac.next() assert x == 'ABC' testAlphabetCounter() del testAlphabetCounter globalPdb = None traceCalled = False def setupPdb(): import pdb; class pandaPdb(pdb.Pdb): def stop_here(self, frame): global traceCalled if(traceCalled): result = pdb.Pdb.stop_here(self, frame) if(result == True): traceCalled = False return result if frame is self.stopframe: return True return False global globalPdb globalPdb = pandaPdb() globalPdb.reset() sys.settrace(globalPdb.trace_dispatch) def pandaTrace(): if __dev__: if not globalPdb: setupPdb() global traceCalled globalPdb.set_trace(sys._getframe().f_back) traceCalled = True packageMap = { "toontown":"$TOONTOWN", "direct":"$DIRECT", "otp":"$OTP", "pirates":"$PIRATES", } #assuming . dereferncing for nice linking to imports def pandaBreak(dotpath, linenum, temporary = 0, cond = None): if __dev__: from pandac.PandaModules import Filename if not globalPdb: setupPdb() dirs = dotpath.split(".") root = Filename.expandFrom(packageMap[dirs[0]]).toOsSpecific() filename = root + "\\src" for d in dirs[1:]: filename="%s\\%s"%(filename,d) print filename globalPdb.set_break(filename+".py", linenum, temporary, cond) class Default: # represents 'use the default value' # useful for keyword arguments to virtual methods pass superLogFile = None def startSuperLog(customFunction = None): global superLogFile if(not superLogFile): superLogFile = open("c:\\temp\\superLog.txt", "w") def trace_dispatch(a,b,c): if(b=='call' and a.f_code.co_name != '?' and a.f_code.co_name.find("safeRepr")<0): vars = dict(a.f_locals) if 'self' in vars: del vars['self'] if '__builtins__' in vars: del vars['__builtins__'] for i in vars: vars[i] = safeReprTypeOnFail(vars[i]) if customFunction: superLogFile.write( "before = %s\n"%customFunction()) superLogFile.write( "%s(%s):%s:%s\n"%(a.f_code.co_filename.split("\\")[-1],a.f_code.co_firstlineno, a.f_code.co_name, vars)) if customFunction: superLogFile.write( "after = %s\n"%customFunction()) return trace_dispatch sys.settrace(trace_dispatch) def endSuperLog(): global superLogFile if(superLogFile): sys.settrace(None) superLogFile.close() superLogFile = None def isInteger(n): return type(n) in (types.IntType, types.LongType) def configIsToday(configName): # TODO: replace usage of strptime with something else # returns true if config string is a valid representation of today's date today = time.localtime() confStr = config.GetString(configName, '') for format in ('%m/%d/%Y', '%m-%d-%Y', '%m.%d.%Y'): try: confDate = time.strptime(confStr, format) except ValueError: pass else: if (confDate.tm_year == today.tm_year and confDate.tm_mon == today.tm_mon and confDate.tm_mday == today.tm_mday): return True return False def typeName(o): if hasattr(o, '__class__'): return o.__class__.__name__ else: return o.__name__ def safeTypeName(o): try: return typeName(o) except: pass try: return type(o) except: pass return '' def histogramDict(l): d = {} for e in l: d.setdefault(e, 0) d[e] += 1 return d def unescapeHtmlString(s): # converts %## to corresponding character # replaces '+' with ' ' result = '' i = 0 while i < len(s): char = s[i] if char == '+': char = ' ' elif char == '%': if i < (len(s)-2): num = int(s[i+1:i+3], 16) char = chr(num) i += 2 i += 1 result += char return result if __debug__ and __name__ == '__main__': assert unescapeHtmlString('asdf') == 'asdf' assert unescapeHtmlString('as+df') == 'as df' assert unescapeHtmlString('as%32df') == 'as2df' assert unescapeHtmlString('asdf%32') == 'asdf2' class HTMLStringToElements(HTMLParser): def __init__(self, str, *a, **kw): self._elements = [] self._elementStack = Stack() HTMLParser.__init__(self, *a, **kw) self.feed(str) self.close() def getElements(self): return self._elements def _handleNewElement(self, element): if len(self._elementStack): self._elementStack.top().append(element) else: self._elements.append(element) self._elementStack.push(element) def handle_starttag(self, tag, attrs): kwArgs = {} for name, value in attrs: kwArgs[name] = value el = ET.Element(tag, **kwArgs) self._handleNewElement(el) def handle_data(self, data): # this ignores text outside of a tag if len(self._elementStack): self._elementStack.top().text = data def handle_endtag(self, tag): top = self._elementStack.top() if len(top.getchildren()) == 0: # insert a comment to prevent ElementTree from using <... /> convention # force it to create a tag closer a la # prevents problems in certain browsers if top.tag == 'script' and top.get('type') == 'text/javascript': if top.text == None: top.text = '// force tag closer' else: self.handle_comment('force tag closer') self._elementStack.pop() self._elementStack.pop() def handle_comment(self, data): comment = ET.Comment(data) self._handleNewElement(comment) def str2elements(str): return HTMLStringToElements(str).getElements() if __debug__ and __name__ == '__main__': s = ScratchPad() assert len(str2elements('')) == 0 s.br = str2elements('
') assert len(s.br) == 1 assert s.br[0].tag == 'br' s.b = str2elements('
') assert len(s.b) == 1 assert len(s.b[0].getchildren()) == 1 s.a = str2elements('test') assert len(s.a) == 1 assert s.a[0].get('href') == '/' assert s.a[0].text == 'test' s.c = str2elements('') assert len(s.c) == 1 assert s.c[0].text == 'testComment' del s def repeatableRepr(obj): if type(obj) is types.DictType: keys = obj.keys() keys.sort() s = '{' for i in xrange(len(keys)): key = keys[i] s += repeatableRepr(key) s += ': ' s += repeatableRepr(obj[key]) if i < (len(keys)-1): s += ', ' s += '}' return s elif type(obj) is type(set()): l = [] for item in obj: l.append(item) l.sort() return repeatableRepr(l) return repr(obj) if __debug__ and __name__ == '__main__': assert repeatableRepr({1: 'a', 2: 'b'}) == repeatableRepr({2: 'b', 1: 'a'}) assert repeatableRepr(set([1,2,3])) == repeatableRepr(set([3,2,1])) #set up bpdb bpdb = BpDb.BpDb() def bpdbGetEnabled(): enabled = True try: enabled = __dev__ enabled = ConfigVariableBool('force-breakpoints', enabled).getValue() finally: return enabled bpdb.setEnabledCallback(bpdbGetEnabled) bpdb.setConfigCallback(lambda cfg: ConfigVariableBool('want-bp-%s' % (cfg.lower(),), 0).getValue()) def u2ascii(s): # Unicode -> ASCII if type(s) is types.UnicodeType: return unicodedata.normalize('NFKD', s).encode('ascii', 'backslashreplace') else: return str(s) def unicodeUtf8(s): # * -> Unicode UTF-8 if type(s) is types.UnicodeType: return s else: return unicode(str(s), 'utf-8') def encodedUtf8(s): # * -> 8-bit-encoded UTF-8 return unicodeUtf8(s).encode('utf-8') class PriorityCallbacks: """ manage a set of prioritized callbacks, and allow them to be invoked in order of priority """ def __init__(self): self._callbacks = [] def clear(self): while self._callbacks: self._callbacks.pop() def add(self, callback, priority=None): if priority is None: priority = 0 item = (priority, callback) bisect.insort(self._callbacks, item) return item def remove(self, item): self._callbacks.pop(bisect.bisect_left(self._callbacks, item)) def __call__(self): for priority, callback in self._callbacks: callback() if __debug__ and __name__ == '__main__': l = [] def a(l=l): l.append('a') def b(l=l): l.append('b') def c(l=l): l.append('c') pc = PriorityCallbacks() pc.add(a) pc() assert l == ['a'] while len(l): l.pop() bItem = pc.add(b) pc() assert 'a' in l assert 'b' in l assert len(l) == 2 while len(l): l.pop() pc.remove(bItem) pc() assert l == ['a'] while len(l): l.pop() pc.add(c, 2) bItem = pc.add(b, 10) pc() assert l == ['a', 'c', 'b'] while len(l): l.pop() pc.remove(bItem) pc() assert l == ['a', 'c'] while len(l): l.pop() pc.clear() pc() assert len(l) == 0 del l del a del b del c del pc del bItem import __builtin__ __builtin__.Functor = Functor __builtin__.Stack = Stack __builtin__.Queue = Queue __builtin__.Enum = Enum __builtin__.SerialNumGen = SerialNumGen __builtin__.SerialMaskedGen = SerialMaskedGen __builtin__.ScratchPad = ScratchPad __builtin__.DestructiveScratchPad = DestructiveScratchPad __builtin__.uniqueName = uniqueName __builtin__.serialNum = serialNum __builtin__.profiled = profiled __builtin__.set_trace = set_trace __builtin__.setTrace = setTrace __builtin__.pm = pm __builtin__.itype = itype __builtin__.exceptionLogged = exceptionLogged __builtin__.appendStr = appendStr __builtin__.bound = bound __builtin__.clamp = clamp __builtin__.lerp = lerp __builtin__.notNone = notNone __builtin__.clampScalar = clampScalar __builtin__.makeList = makeList __builtin__.makeTuple = makeTuple __builtin__.printStack = printStack __builtin__.printReverseStack = printReverseStack __builtin__.printVerboseStack = printVerboseStack __builtin__.DelayedCall = DelayedCall __builtin__.DelayedFunctor = DelayedFunctor __builtin__.FrameDelayedCall = FrameDelayedCall __builtin__.SubframeCall = SubframeCall __builtin__.ArgumentEater = ArgumentEater __builtin__.ClassTree = ClassTree __builtin__.invertDict = invertDict __builtin__.invertDictLossless = invertDictLossless __builtin__.getBase = getBase __builtin__.getRepository = getRepository __builtin__.safeRepr = safeRepr __builtin__.fastRepr = fastRepr __builtin__.nullGen = nullGen __builtin__.flywheel = flywheel __builtin__.loopGen = loopGen __builtin__.StackTrace = StackTrace __builtin__.choice = choice __builtin__.report = report __builtin__.pstatcollect = pstatcollect __builtin__.MiniLog = MiniLog __builtin__.MiniLogSentry = MiniLogSentry __builtin__.logBlock = logBlock __builtin__.HierarchyException = HierarchyException __builtin__.pdir = pdir __builtin__.deeptype = deeptype __builtin__.Default = Default __builtin__.isInteger = isInteger __builtin__.configIsToday = configIsToday __builtin__.typeName = typeName __builtin__.safeTypeName = safeTypeName __builtin__.histogramDict = histogramDict __builtin__.repeatableRepr = repeatableRepr __builtin__.bpdb = bpdb __builtin__.u2ascii = u2ascii __builtin__.unicodeUtf8 = unicodeUtf8 __builtin__.encodedUtf8 = encodedUtf8