""" This module defines a Python-level wrapper around the C++ AsyncTaskManager interface. It replaces the old full-Python implementation of the Task system. """ __all__ = ['Task', 'TaskManager', 'cont', 'done', 'again', 'pickup', 'exit', 'sequence', 'loop', 'pause'] from direct.directnotify.DirectNotifyGlobal import * from direct.showbase import ExceptionVarDump from direct.showbase.PythonUtil import * from direct.showbase.MessengerGlobal import messenger import signal import types import time import random import string from pandac.PandaModules import * def print_exc_plus(): """ Print the usual traceback information, followed by a listing of all the local variables in each frame. """ import sys import traceback tb = sys.exc_info()[2] while 1: if not tb.tb_next: break tb = tb.tb_next stack = [] f = tb.tb_frame while f: stack.append(f) f = f.f_back stack.reverse() traceback.print_exc() print "Locals by frame, innermost last" for frame in stack: print print "Frame %s in %s at line %s" % (frame.f_code.co_name, frame.f_code.co_filename, frame.f_lineno) for key, value in frame.f_locals.items(): print "\t%20s = " % key, #We have to be careful not to cause a new error in our error #printer! Calling str() on an unknown object could cause an #error we don't want. try: print value except: print "" # For historical purposes, we remap the C++-defined enumeration to # these Python names, and define them both at the module level, here, # and at the class level (below). The preferred access is via the # class level. done = AsyncTask.DSDone cont = AsyncTask.DSCont again = AsyncTask.DSAgain pickup = AsyncTask.DSPickup exit = AsyncTask.DSExit # Alias PythonTask to Task for historical purposes. Task = PythonTask # Copy the module-level enums above into the class level. This funny # syntax is necessary because it's a C++-wrapped extension type, not a # true Python class. Task.DtoolClassDict['done'] = done Task.DtoolClassDict['cont'] = cont Task.DtoolClassDict['again'] = again Task.DtoolClassDict['pickup'] = pickup Task.DtoolClassDict['exit'] = exit # Alias the AsyncTaskPause constructor as Task.pause(). pause = AsyncTaskPause Task.DtoolClassDict['pause'] = staticmethod(pause) def sequence(*taskList): seq = AsyncTaskSequence('sequence') for task in taskList: seq.addTask(task) return seq Task.DtoolClassDict['sequence'] = staticmethod(sequence) def loop(*taskList): seq = AsyncTaskSequence('loop') for task in taskList: seq.addTask(task) seq.setRepeatCount(-1) return seq Task.DtoolClassDict['loop'] = staticmethod(loop) class TaskManager: notify = directNotify.newCategory("TaskManager") extendedExceptions = False MaxEpochSpeed = 1.0/30.0 def __init__(self): self.mgr = AsyncTaskManager.getGlobalPtr() self.resumeFunc = None self.globalClock = self.mgr.getClock() self.stepping = False self.running = False self.destroyed = False self.fKeyboardInterrupt = False self.interruptCount = 0 self._frameProfileQueue = Queue() # this will be set when it's safe to import StateVar self._profileFrames = None self._frameProfiler = None self._profileTasks = None self._taskProfiler = None self._taskProfileInfo = ScratchPad( taskId = None, profiled = False, session = None, ) def finalInit(self): # This function should be called once during startup, after # most things are imported. from direct.fsm.StatePush import StateVar self._profileTasks = StateVar(False) self.setProfileTasks(ConfigVariableBool('profile-task-spikes', 0).getValue()) self._profileFrames = StateVar(False) self.setProfileFrames(ConfigVariableBool('profile-frames', 0).getValue()) def destroy(self): # This should be safe to call multiple times. self.notify.info("TaskManager.destroy()") self.destroyed = True self._frameProfileQueue.clear() self.mgr.cleanup() def setClock(self, clockObject): self.mgr.setClock(clockObject) self.globalClock = clockObject def invokeDefaultHandler(self, signalNumber, stackFrame): print '*** allowing mid-frame keyboard interrupt.' # Restore default interrupt handler signal.signal(signal.SIGINT, signal.default_int_handler) # and invoke it raise KeyboardInterrupt def keyboardInterruptHandler(self, signalNumber, stackFrame): self.fKeyboardInterrupt = 1 self.interruptCount += 1 if self.interruptCount == 1: print '* interrupt by keyboard' elif self.interruptCount == 2: print '** waiting for end of frame before interrupting...' # The user must really want to interrupt this process # Next time around invoke the default handler signal.signal(signal.SIGINT, self.invokeDefaultHandler) def getCurrentTask(self): """ Returns the task currently executing on this thread, or None if this is being called outside of the task manager. """ return Thread.getCurrentThread().getCurrentTask() def hasTaskChain(self, chainName): """ Returns true if a task chain with the indicated name has already been defined, or false otherwise. Note that setupTaskChain() will implicitly define a task chain if it has not already been defined, or modify an existing one if it has, so in most cases there is no need to check this method first. """ return (self.mgr.findTaskChain(chainName) != None) def setupTaskChain(self, chainName, numThreads = None, tickClock = None, threadPriority = None, frameBudget = None, frameSync = None, timeslicePriority = None): """Defines a new task chain. Each task chain executes tasks potentially in parallel with all of the other task chains (if numThreads is more than zero). When a new task is created, it may be associated with any of the task chains, by name (or you can move a task to another task chain with task.setTaskChain()). You can have any number of task chains, but each must have a unique name. numThreads is the number of threads to allocate for this task chain. If it is 1 or more, then the tasks on this task chain will execute in parallel with the tasks on other task chains. If it is greater than 1, then the tasks on this task chain may execute in parallel with themselves (within tasks of the same sort value). If tickClock is True, then this task chain will be responsible for ticking the global clock each frame (and thereby incrementing the frame counter). There should be just one task chain responsible for ticking the clock, and usually it is the default, unnamed task chain. threadPriority specifies the priority level to assign to threads on this task chain. It may be one of TPLow, TPNormal, TPHigh, or TPUrgent. This is passed to the underlying threading system to control the way the threads are scheduled. frameBudget is the maximum amount of time (in seconds) to allow this task chain to run per frame. Set it to -1 to mean no limit (the default). It's not directly related to threadPriority. frameSync is true to force the task chain to sync to the clock. When this flag is false, the default, the task chain will finish all of its tasks and then immediately start from the first task again, regardless of the clock frame. When it is true, the task chain will finish all of its tasks and then wait for the clock to tick to the next frame before resuming the first task. This only makes sense for threaded tasks chains; non-threaded task chains are automatically synchronous. timeslicePriority is False in the default mode, in which each task runs exactly once each frame, round-robin style, regardless of the task's priority value; or True to change the meaning of priority so that certain tasks are run less often, in proportion to their time used and to their priority value. See AsyncTaskManager.setTimeslicePriority() for more. """ chain = self.mgr.makeTaskChain(chainName) if numThreads is not None: chain.setNumThreads(numThreads) if tickClock is not None: chain.setTickClock(tickClock) if threadPriority is not None: chain.setThreadPriority(threadPriority) if frameBudget is not None: chain.setFrameBudget(frameBudget) if frameSync is not None: chain.setFrameSync(frameSync) if timeslicePriority is not None: chain.setTimeslicePriority(timeslicePriority) def hasTaskNamed(self, taskName): """Returns true if there is at least one task, active or sleeping, with the indicated name. """ return bool(self.mgr.findTask(taskName)) def getTasksNamed(self, taskName): """Returns a list of all tasks, active or sleeping, with the indicated name. """ return self.__makeTaskList(self.mgr.findTasks(taskName)) def getTasksMatching(self, taskPattern): """Returns a list of all tasks, active or sleeping, with a name that matches the pattern, which can include standard shell globbing characters like *, ?, and []. """ return self.__makeTaskList(self.mgr.findTasksMatching(GlobPattern(taskPattern))) def getAllTasks(self): """Returns list of all tasks, active and sleeping, in arbitrary order. """ return self.__makeTaskList(self.mgr.getTasks()) def getTasks(self): """Returns list of all active tasks in arbitrary order. """ return self.__makeTaskList(self.mgr.getActiveTasks()) def getDoLaters(self): """Returns list of all sleeping tasks in arbitrary order. """ return self.__makeTaskList(self.mgr.getSleepingTasks()) def __makeTaskList(self, taskCollection): l = [] for i in range(taskCollection.getNumTasks()): l.append(taskCollection.getTask(i)) return l def doMethodLater(self, delayTime, funcOrTask, name, extraArgs = None, sort = None, priority = None, taskChain = None, uponDeath = None, appendTask = False, owner = None): """Adds a task to be performed at some time in the future. This is identical to add(), except that the specified delayTime is applied to the Task object first, which means that the task will not begin executing until at least the indicated delayTime (in seconds) has elapsed. After delayTime has elapsed, the task will become active, and will run in the soonest possible frame thereafter. If you wish to specify a task that will run in the next frame, use a delayTime of 0. """ if delayTime < 0: assert self.notify.warning('doMethodLater: added task: %s with negative delay: %s' % (name, delayTime)) task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath) task.setDelay(delayTime) self.mgr.add(task) return task def add(self, funcOrTask, name = None, sort = None, extraArgs = None, priority = None, uponDeath = None, appendTask = False, taskChain = None, owner = None): """ Add a new task to the taskMgr. The task will begin executing immediately, or next frame if its sort value has already passed this frame. The parameters are: funcOrTask - either an existing Task object (not already added to the task manager), or a callable function object. If this is a function, a new Task object will be created and returned. name - the name to assign to the Task. Required, unless you are passing in a Task object that already has a name. extraArgs - the list of arguments to pass to the task function. If this is omitted, the list is just the task object itself. appendTask - a boolean flag. If this is true, then the task object itself will be appended to the end of the extraArgs list before calling the function. sort - the sort value to assign the task. The default sort is 0. Within a particular task chain, it is guaranteed that the tasks with a lower sort value will all run before tasks with a higher sort value run. priority - the priority at which to run the task. The default priority is 0. Higher priority tasks are run sooner, and/or more often. For historical purposes, if you specify a priority without also specifying a sort, the priority value is understood to actually be a sort value. (Previously, there was no priority value, only a sort value, and it was called "priority".) uponDeath - a function to call when the task terminates, either because it has run to completion, or because it has been explicitly removed. taskChain - the name of the task chain to assign the task to. owner - an optional Python object that is declared as the "owner" of this task for maintenance purposes. The owner must have two methods: owner._addTask(self, task), which is called when the task begins, and owner._clearTask(self, task), which is called when the task terminates. This is all the owner means. The return value of add() is the new Task object that has been added, or the original Task object that was passed in. """ task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath) self.mgr.add(task) return task def __setupTask(self, funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath): if isinstance(funcOrTask, AsyncTask): task = funcOrTask elif hasattr(funcOrTask, '__call__'): task = PythonTask(funcOrTask) else: self.notify.error( 'add: Tried to add a task that was not a Task or a func') if hasattr(task, 'setArgs'): # It will only accept arguments if it's a PythonTask. if extraArgs is None: extraArgs = [] appendTask = True task.setArgs(extraArgs, appendTask) elif extraArgs is not None: self.notify.error( 'Task %s does not accept arguments.' % (repr(task))) if name is not None: assert isinstance(name, types.StringTypes), 'Name must be a string type' task.setName(name) assert task.hasName() # For historical reasons, if priority is specified but not # sort, it really means sort. if priority is not None and sort is None: task.setSort(priority) else: if priority is not None: task.setPriority(priority) if sort is not None: task.setSort(sort) if taskChain is not None: task.setTaskChain(taskChain) if owner is not None: task.setOwner(owner) if uponDeath is not None: task.setUponDeath(uponDeath) return task def remove(self, taskOrName): """Removes a task from the task manager. The task is stopped, almost as if it had returned task.done. (But if the task is currently executing, it will finish out its current frame before being removed.) You may specify either an explicit Task object, or the name of a task. If you specify a name, all tasks with the indicated name are removed. Returns the number of tasks removed. """ if isinstance(taskOrName, types.StringTypes): tasks = self.mgr.findTasks(taskOrName) return self.mgr.remove(tasks) elif isinstance(taskOrName, AsyncTask): return self.mgr.remove(taskOrName) elif isinstance(taskOrName, types.ListType): for task in taskOrName: self.remove(task) else: self.notify.error('remove takes a string or a Task') def removeTasksMatching(self, taskPattern): """Removes all tasks whose names match the pattern, which can include standard shell globbing characters like *, ?, and []. See also remove(). Returns the number of tasks removed. """ tasks = self.mgr.findTasksMatching(GlobPattern(taskPattern)) return self.mgr.remove(tasks) def step(self): """Invokes the task manager for one frame, and then returns. Normally, this executes each task exactly once, though task chains that are in sub-threads or that have frame budgets might execute their tasks differently. """ # Replace keyboard interrupt handler during task list processing # so we catch the keyboard interrupt but don't handle it until # after task list processing is complete. self.fKeyboardInterrupt = 0 self.interruptCount = 0 signal.signal(signal.SIGINT, self.keyboardInterruptHandler) startFrameTime = self.globalClock.getRealTime() self.mgr.poll() # This is the spot for an internal yield function nextTaskTime = self.mgr.getNextWakeTime() self.doYield(startFrameTime, nextTaskTime) # Restore default interrupt handler signal.signal(signal.SIGINT, signal.default_int_handler) if self.fKeyboardInterrupt: raise KeyboardInterrupt def run(self): """Starts the task manager running. Does not return until an exception is encountered (including KeyboardInterrupt). """ # Set the clock to have last frame's time in case we were # Paused at the prompt for a long time t = self.globalClock.getFrameTime() timeDelta = t - self.globalClock.getRealTime() self.globalClock.setRealTime(t) messenger.send("resetClock", [timeDelta]) if self.resumeFunc != None: self.resumeFunc() if self.stepping: self.step() else: self.running = True while self.running: try: if len(self._frameProfileQueue): numFrames, session, callback = self._frameProfileQueue.pop() def _profileFunc(numFrames=numFrames): self._doProfiledFrames(numFrames) session.setFunc(_profileFunc) session.run() _profileFunc = None if callback: callback() session.release() else: self.step() except KeyboardInterrupt: self.stop() except SystemExit: self.stop() raise except IOError, ioError: code, message = self._unpackIOError(ioError) # Since upgrading to Python 2.4.1, pausing the execution # often gives this IOError during the sleep function: # IOError: [Errno 4] Interrupted function call # So, let's just handle that specific exception and stop. # All other IOErrors should still get raised. # Only problem: legit IOError 4s will be obfuscated. if code == 4: self.stop() else: raise except Exception, e: if self.extendedExceptions: self.stop() print_exc_plus() else: if (ExceptionVarDump.wantStackDumpLog and ExceptionVarDump.dumpOnExceptionInit): ExceptionVarDump._varDump__print(e) raise except: if self.extendedExceptions: self.stop() print_exc_plus() else: raise self.mgr.stopThreads() def _unpackIOError(self, ioError): # IOError unpack from http://www.python.org/doc/essays/stdexceptions/ # this needs to be in its own method, exceptions that occur inside # a nested try block are not caught by the inner try block's except try: (code, message) = ioError except: code = 0 message = ioError return code, message def stop(self): # Set a flag so we will stop before beginning next frame self.running = False def __tryReplaceTaskMethod(self, task, oldMethod, newFunction): if not isinstance(task, PythonTask): return 0 method = task.getFunction() if (type(method) == types.MethodType): function = method.im_func else: function = method if (function == oldMethod): newMethod = types.MethodType(newFunction, method.im_self, method.im_class) task.setFunction(newMethod) # Found a match return 1 return 0 def replaceMethod(self, oldMethod, newFunction): numFound = 0 for task in self.getAllTasks(): numFound += self.__tryReplaceTaskMethod(task, oldMethod, newFunction) return numFound def popupControls(self): from direct.tkpanels import TaskManagerPanel return TaskManagerPanel.TaskManagerPanel(self) def getProfileSession(self, name=None): # call to get a profile session that you can modify before passing to profileFrames() if name is None: name = 'taskMgrFrameProfile' # Defer this import until we need it: some Python # distributions don't provide the profile and pstats modules. from direct.showbase.ProfileSession import ProfileSession return ProfileSession(name) def profileFrames(self, num=None, session=None, callback=None): if num is None: num = 1 if session is None: session = self.getProfileSession() # make sure the profile session doesn't get destroyed before we're done with it session.acquire() self._frameProfileQueue.push((num, session, callback)) def _doProfiledFrames(self, numFrames): for i in xrange(numFrames): result = self.step() return result def getProfileFrames(self): return self._profileFrames.get() def getProfileFramesSV(self): return self._profileFrames def setProfileFrames(self, profileFrames): self._profileFrames.set(profileFrames) if (not self._frameProfiler) and profileFrames: # import here due to import dependencies from direct.task.FrameProfiler import FrameProfiler self._frameProfiler = FrameProfiler() def getProfileTasks(self): return self._profileTasks.get() def getProfileTasksSV(self): return self._profileTasks def setProfileTasks(self, profileTasks): self._profileTasks.set(profileTasks) if (not self._taskProfiler) and profileTasks: # import here due to import dependencies from direct.task.TaskProfiler import TaskProfiler self._taskProfiler = TaskProfiler() def logTaskProfiles(self, name=None): if self._taskProfiler: self._taskProfiler.logProfiles(name) def flushTaskProfiles(self, name=None): if self._taskProfiler: self._taskProfiler.flush(name) def _setProfileTask(self, task): if self._taskProfileInfo.session: self._taskProfileInfo.session.release() self._taskProfileInfo.session = None self._taskProfileInfo = ScratchPad( taskFunc = task.getFunction(), taskArgs = task.getArgs(), task = task, profiled = False, session = None, ) # Temporarily replace the task's own function with our # _profileTask method. task.setFunction(self._profileTask) task.setArgs([self._taskProfileInfo], True) def _profileTask(self, profileInfo, task): # This is called instead of the task function when we have # decided to profile a task. assert profileInfo.task == task # don't profile the same task twice in a row assert not profileInfo.profiled # Restore the task's proper function for next time. appendTask = False taskArgs = profileInfo.taskArgs if taskArgs and taskArgs[-1] == task: appendTask = True taskArgs = taskArgs[:-1] task.setArgs(taskArgs, appendTask) task.setFunction(profileInfo.taskFunc) # Defer this import until we need it: some Python # distributions don't provide the profile and pstats modules. from direct.showbase.ProfileSession import ProfileSession profileSession = ProfileSession('profiled-task-%s' % task.getName(), Functor(profileInfo.taskFunc, *profileInfo.taskArgs)) ret = profileSession.run() # set these values *after* profiling in case we're profiling the TaskProfiler profileInfo.session = profileSession profileInfo.profiled = True return ret def _hasProfiledDesignatedTask(self): # have we run a profile of the designated task yet? return self._taskProfileInfo.profiled def _getLastTaskProfileSession(self): return self._taskProfileInfo.session def _getRandomTask(self): # Figure out when the next frame is likely to expire, so we # won't grab any tasks that are sleeping for a long time. now = globalClock.getFrameTime() avgFrameRate = globalClock.getAverageFrameRate() if avgFrameRate < .00001: avgFrameDur = 0. else: avgFrameDur = (1. / globalClock.getAverageFrameRate()) next = now + avgFrameDur # Now grab a task at random, until we find one that we like. tasks = self.mgr.getTasks() i = random.randrange(tasks.getNumTasks()) task = tasks.getTask(i) while not isinstance(task, PythonTask) or \ task.getWakeTime() > next: tasks.removeTask(i) i = random.randrange(tasks.getNumTasks()) task = tasks.getTask(i) return task def __repr__(self): return str(self.mgr) # In the event we want to do frame time managment, this is the # function to replace or overload. def doYield(self, frameStartTime, nextScheduledTaskTime): pass """ def doYieldExample(self, frameStartTime, nextScheduledTaskTime): minFinTime = frameStartTime + self.MaxEpochSpeed if nextScheduledTaskTime > 0 and nextScheduledTaskTime < minFinTime: print ' Adjusting Time' minFinTime = nextScheduledTaskTime delta = minFinTime - self.globalClock.getRealTime() while(delta > 0.002): print ' sleep %s'% (delta) time.sleep(delta) delta = minFinTime - self.globalClock.getRealTime() """ if __debug__: # to catch memory leaks during the tests at the bottom of the file def _startTrackingMemLeaks(self): pass def _stopTrackingMemLeaks(self): pass def _checkMemLeaks(self): pass def _runTests(self): if __debug__: tm = TaskManager() tm.setClock(ClockObject()) tm.setupTaskChain("default", tickClock = True) # check for memory leaks after every test tm._startTrackingMemLeaks() tm._checkMemLeaks() # run-once task l = [] def _testDone(task, l=l): l.append(None) return task.done tm.add(_testDone, 'testDone') tm.step() assert len(l) == 1 tm.step() assert len(l) == 1 _testDone = None tm._checkMemLeaks() # remove by name def _testRemoveByName(task): return task.done tm.add(_testRemoveByName, 'testRemoveByName') assert tm.remove('testRemoveByName') == 1 assert tm.remove('testRemoveByName') == 0 _testRemoveByName = None tm._checkMemLeaks() # duplicate named tasks def _testDupNamedTasks(task): return task.done tm.add(_testDupNamedTasks, 'testDupNamedTasks') tm.add(_testDupNamedTasks, 'testDupNamedTasks') assert tm.remove('testRemoveByName') == 0 _testDupNamedTasks = None tm._checkMemLeaks() # continued task l = [] def _testCont(task, l = l): l.append(None) return task.cont tm.add(_testCont, 'testCont') tm.step() assert len(l) == 1 tm.step() assert len(l) == 2 tm.remove('testCont') _testCont = None tm._checkMemLeaks() # continue until done task l = [] def _testContDone(task, l = l): l.append(None) if len(l) >= 2: return task.done else: return task.cont tm.add(_testContDone, 'testContDone') tm.step() assert len(l) == 1 tm.step() assert len(l) == 2 tm.step() assert len(l) == 2 assert not tm.hasTaskNamed('testContDone') _testContDone = None tm._checkMemLeaks() # hasTaskNamed def _testHasTaskNamed(task): return task.done tm.add(_testHasTaskNamed, 'testHasTaskNamed') assert tm.hasTaskNamed('testHasTaskNamed') tm.step() assert not tm.hasTaskNamed('testHasTaskNamed') _testHasTaskNamed = None tm._checkMemLeaks() # task sort l = [] def _testPri1(task, l = l): l.append(1) return task.cont def _testPri2(task, l = l): l.append(2) return task.cont tm.add(_testPri1, 'testPri1', sort = 1) tm.add(_testPri2, 'testPri2', sort = 2) tm.step() assert len(l) == 2 assert l == [1, 2,] tm.step() assert len(l) == 4 assert l == [1, 2, 1, 2,] tm.remove('testPri1') tm.remove('testPri2') _testPri1 = None _testPri2 = None tm._checkMemLeaks() # task extraArgs l = [] def _testExtraArgs(arg1, arg2, l=l): l.extend([arg1, arg2,]) return done tm.add(_testExtraArgs, 'testExtraArgs', extraArgs=[4,5]) tm.step() assert len(l) == 2 assert l == [4, 5,] _testExtraArgs = None tm._checkMemLeaks() # task appendTask l = [] def _testAppendTask(arg1, arg2, task, l=l): l.extend([arg1, arg2,]) return task.done tm.add(_testAppendTask, '_testAppendTask', extraArgs=[4,5], appendTask=True) tm.step() assert len(l) == 2 assert l == [4, 5,] _testAppendTask = None tm._checkMemLeaks() # task uponDeath l = [] def _uponDeathFunc(task, l=l): l.append(task.name) def _testUponDeath(task): return done tm.add(_testUponDeath, 'testUponDeath', uponDeath=_uponDeathFunc) tm.step() assert len(l) == 1 assert l == ['testUponDeath'] _testUponDeath = None _uponDeathFunc = None tm._checkMemLeaks() # task owner class _TaskOwner: def _addTask(self, task): self.addedTaskName = task.name def _clearTask(self, task): self.clearedTaskName = task.name to = _TaskOwner() l = [] def _testOwner(task): return done tm.add(_testOwner, 'testOwner', owner=to) tm.step() assert getattr(to, 'addedTaskName', None) == 'testOwner' assert getattr(to, 'clearedTaskName', None) == 'testOwner' _testOwner = None del to _TaskOwner = None tm._checkMemLeaks() doLaterTests = [0,] # doLater l = [] def _testDoLater1(task, l=l): l.append(1) def _testDoLater2(task, l=l): l.append(2) def _monitorDoLater(task, tm=tm, l=l, doLaterTests=doLaterTests): if task.time > .03: assert l == [1, 2,] doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLater1, 'testDoLater1') tm.doMethodLater(.02, _testDoLater2, 'testDoLater2') doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLater, 'monitorDoLater', sort=10) _testDoLater1 = None _testDoLater2 = None _monitorDoLater = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # doLater sort l = [] def _testDoLaterPri1(task, l=l): l.append(1) def _testDoLaterPri2(task, l=l): l.append(2) def _monitorDoLaterPri(task, tm=tm, l=l, doLaterTests=doLaterTests): if task.time > .02: assert l == [1, 2,] doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLaterPri1, 'testDoLaterPri1', sort=1) tm.doMethodLater(.01, _testDoLaterPri2, 'testDoLaterPri2', sort=2) doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLaterPri, 'monitorDoLaterPri', sort=10) _testDoLaterPri1 = None _testDoLaterPri2 = None _monitorDoLaterPri = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # doLater extraArgs l = [] def _testDoLaterExtraArgs(arg1, l=l): l.append(arg1) def _monitorDoLaterExtraArgs(task, tm=tm, l=l, doLaterTests=doLaterTests): if task.time > .02: assert l == [3,] doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLaterExtraArgs, 'testDoLaterExtraArgs', extraArgs=[3,]) doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLaterExtraArgs, 'monitorDoLaterExtraArgs', sort=10) _testDoLaterExtraArgs = None _monitorDoLaterExtraArgs = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # doLater appendTask l = [] def _testDoLaterAppendTask(arg1, task, l=l): assert task.name == 'testDoLaterAppendTask' l.append(arg1) def _monitorDoLaterAppendTask(task, tm=tm, l=l, doLaterTests=doLaterTests): if task.time > .02: assert l == [4,] doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLaterAppendTask, 'testDoLaterAppendTask', extraArgs=[4,], appendTask=True) doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLaterAppendTask, 'monitorDoLaterAppendTask', sort=10) _testDoLaterAppendTask = None _monitorDoLaterAppendTask = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # doLater uponDeath l = [] def _testUponDeathFunc(task, l=l): assert task.name == 'testDoLaterUponDeath' l.append(10) def _testDoLaterUponDeath(arg1, l=l): return done def _monitorDoLaterUponDeath(task, tm=tm, l=l, doLaterTests=doLaterTests): if task.time > .02: assert l == [10,] doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLaterUponDeath, 'testDoLaterUponDeath', uponDeath=_testUponDeathFunc) doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLaterUponDeath, 'monitorDoLaterUponDeath', sort=10) _testUponDeathFunc = None _testDoLaterUponDeath = None _monitorDoLaterUponDeath = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # doLater owner class _DoLaterOwner: def _addTask(self, task): self.addedTaskName = task.name def _clearTask(self, task): self.clearedTaskName = task.name doLaterOwner = _DoLaterOwner() l = [] def _testDoLaterOwner(l=l): pass def _monitorDoLaterOwner(task, tm=tm, l=l, doLaterOwner=doLaterOwner, doLaterTests=doLaterTests): if task.time > .02: assert getattr(doLaterOwner, 'addedTaskName', None) == 'testDoLaterOwner' assert getattr(doLaterOwner, 'clearedTaskName', None) == 'testDoLaterOwner' doLaterTests[0] -= 1 return task.done return task.cont tm.doMethodLater(.01, _testDoLaterOwner, 'testDoLaterOwner', owner=doLaterOwner) doLaterTests[0] += 1 # make sure we run this task after the doLaters if they all occur on the same frame tm.add(_monitorDoLaterOwner, 'monitorDoLaterOwner', sort=10) _testDoLaterOwner = None _monitorDoLaterOwner = None del doLaterOwner _DoLaterOwner = None # don't check until all the doLaters are finished #tm._checkMemLeaks() # run the doLater tests while doLaterTests[0] > 0: tm.step() del doLaterTests tm._checkMemLeaks() # getTasks def _testGetTasks(task): return task.cont # No doLaterProcessor in the new world. assert len(tm.getTasks()) == 0 tm.add(_testGetTasks, 'testGetTasks1') assert len(tm.getTasks()) == 1 assert (tm.getTasks()[0].name == 'testGetTasks1' or tm.getTasks()[1].name == 'testGetTasks1') tm.add(_testGetTasks, 'testGetTasks2') tm.add(_testGetTasks, 'testGetTasks3') assert len(tm.getTasks()) == 3 tm.remove('testGetTasks2') assert len(tm.getTasks()) == 2 tm.remove('testGetTasks1') tm.remove('testGetTasks3') assert len(tm.getTasks()) == 0 _testGetTasks = None tm._checkMemLeaks() # getDoLaters def _testGetDoLaters(): pass assert len(tm.getDoLaters()) == 0 tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater1') assert len(tm.getDoLaters()) == 1 assert tm.getDoLaters()[0].name == 'testDoLater1' tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater2') tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater3') assert len(tm.getDoLaters()) == 3 tm.remove('testDoLater2') assert len(tm.getDoLaters()) == 2 tm.remove('testDoLater1') tm.remove('testDoLater3') assert len(tm.getDoLaters()) == 0 _testGetDoLaters = None tm._checkMemLeaks() # duplicate named doLaters removed via taskMgr.remove def _testDupNameDoLaters(): pass # the doLaterProcessor is always running tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater') tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater') assert len(tm.getDoLaters()) == 2 tm.remove('testDupNameDoLater') assert len(tm.getDoLaters()) == 0 _testDupNameDoLaters = None tm._checkMemLeaks() # duplicate named doLaters removed via remove() def _testDupNameDoLatersRemove(): pass # the doLaterProcessor is always running dl1 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove') dl2 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove') assert len(tm.getDoLaters()) == 2 dl2.remove() assert len(tm.getDoLaters()) == 1 dl1.remove() assert len(tm.getDoLaters()) == 0 _testDupNameDoLatersRemove = None # nameDict etc. isn't cleared out right away with task.remove() tm._checkMemLeaks() # getTasksNamed def _testGetTasksNamed(task): return task.cont assert len(tm.getTasksNamed('testGetTasksNamed')) == 0 tm.add(_testGetTasksNamed, 'testGetTasksNamed') assert len(tm.getTasksNamed('testGetTasksNamed')) == 1 assert tm.getTasksNamed('testGetTasksNamed')[0].name == 'testGetTasksNamed' tm.add(_testGetTasksNamed, 'testGetTasksNamed') tm.add(_testGetTasksNamed, 'testGetTasksNamed') assert len(tm.getTasksNamed('testGetTasksNamed')) == 3 tm.remove('testGetTasksNamed') assert len(tm.getTasksNamed('testGetTasksNamed')) == 0 _testGetTasksNamed = None tm._checkMemLeaks() # removeTasksMatching def _testRemoveTasksMatching(task): return task.cont tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching') assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 1 tm.removeTasksMatching('testRemoveTasksMatching') assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 0 tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1') tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2') assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 1 assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 1 tm.removeTasksMatching('testRemoveTasksMatching*') assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 0 assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 0 tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1a') tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2a') assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 1 assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 1 tm.removeTasksMatching('testRemoveTasksMatching?a') assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 0 assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 0 _testRemoveTasksMatching = None tm._checkMemLeaks() # create Task object and add to mgr l = [] def _testTaskObj(task, l=l): l.append(None) return task.cont t = Task(_testTaskObj) tm.add(t, 'testTaskObj') tm.step() assert len(l) == 1 tm.step() assert len(l) == 2 tm.remove('testTaskObj') tm.step() assert len(l) == 2 _testTaskObj = None tm._checkMemLeaks() # remove Task via task.remove() l = [] def _testTaskObjRemove(task, l=l): l.append(None) return task.cont t = Task(_testTaskObjRemove) tm.add(t, 'testTaskObjRemove') tm.step() assert len(l) == 1 tm.step() assert len(l) == 2 t.remove() tm.step() assert len(l) == 2 del t _testTaskObjRemove = None tm._checkMemLeaks() """ # this test fails, and it's not clear what the correct behavior should be. # sort passed to Task.__init__ is always overridden by taskMgr.add() # even if no sort is specified, and calling Task.setSort() has no # effect on the taskMgr's behavior. # set/get Task sort l = [] def _testTaskObjSort(arg, task, l=l): l.append(arg) return task.cont t1 = Task(_testTaskObjSort, sort=1) t2 = Task(_testTaskObjSort, sort=2) tm.add(t1, 'testTaskObjSort1', extraArgs=['a',], appendTask=True) tm.add(t2, 'testTaskObjSort2', extraArgs=['b',], appendTask=True) tm.step() assert len(l) == 2 assert l == ['a', 'b'] assert t1.getSort() == 1 assert t2.getSort() == 2 t1.setSort(3) assert t1.getSort() == 3 tm.step() assert len(l) == 4 assert l == ['a', 'b', 'b', 'a',] t1.remove() t2.remove() tm.step() assert len(l) == 4 del t1 del t2 _testTaskObjSort = None tm._checkMemLeaks() """ del l tm.destroy() del tm if __debug__: def checkLeak(): import sys import gc gc.enable() from direct.showbase.DirectObject import DirectObject class TestClass(DirectObject): def doTask(self, task): return task.done obj = TestClass() startRefCount = sys.getrefcount(obj) print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj) print '** addTask' t = obj.addTask(obj.doTask, 'test') print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj) print 'task.getRefCount(): %s' % t.getRefCount() print '** removeTask' obj.removeTask('test') print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj) print 'task.getRefCount(): %s' % t.getRefCount() print '** step' taskMgr.step() taskMgr.step() taskMgr.step() print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj) print 'task.getRefCount(): %s' % t.getRefCount() print '** task release' t = None print 'sys.getrefcount(obj): %s' % sys.getrefcount(obj) assert sys.getrefcount(obj) == startRefCount