from pandac.PandaModules import * from DirectGlobals import * from DirectUtil import * import math class LineNodePath(NodePath): def __init__(self, parent = None, name = None, thickness = 1.0, colorVec = VBase4(1)): # Initialize the superclass NodePath.__init__(self) if parent is None: parent = hidden # Attach a geomNode to the parent and set self to be # the resulting node path self.lineNode = GeomNode("lineNode") self.assign(parent.attachNewNode(self.lineNode)) if name: self.setName(name) # Create a lineSegs object to hold the line ls = self.lineSegs = LineSegs() # Initialize the lineSegs parameters ls.setThickness(thickness) ls.setColor(colorVec) def moveTo(self, *_args): apply(self.lineSegs.moveTo, _args) def drawTo(self, *_args): apply(self.lineSegs.drawTo, _args) def create(self, frameAccurate = 0): self.lineSegs.create(self.lineNode, frameAccurate) def reset(self): self.lineSegs.reset() self.lineNode.removeAllGeoms() def isEmpty(self): return self.lineSegs.isEmpty() def setThickness(self, thickness): self.lineSegs.setThickness(thickness) def setColor(self, *_args): apply(self.lineSegs.setColor, _args) def setVertex(self, *_args): apply(self.lineSegs.setVertex, _args) def setVertexColor(self, vertex, *_args): apply(self.lineSegs.setVertexColor, (vertex,) + _args) def getCurrentPosition(self): return self.lineSegs.getCurrentPosition() def getNumVertices(self): return self.lineSegs.getNumVertices() def getVertex(self, index): return self.lineSegs.getVertex(index) def getVertexColor(self): return self.lineSegs.getVertexColor() def drawArrow(self, sv, ev, arrowAngle, arrowLength): """ Do the work of moving the cursor around to draw an arrow from sv to ev. Hack: the arrows take the z value of the end point """ self.moveTo(sv) self.drawTo(ev) v = sv - ev # Find the angle of the line angle = math.atan2(v[1], v[0]) # Get the arrow angles a1 = angle + deg2Rad(arrowAngle) a2 = angle - deg2Rad(arrowAngle) # Get the arrow points a1x = arrowLength * math.cos(a1) a1y = arrowLength * math.sin(a1) a2x = arrowLength * math.cos(a2) a2y = arrowLength * math.sin(a2) z = ev[2] self.moveTo(ev) self.drawTo(Point3(ev + Point3(a1x, a1y, z))) self.moveTo(ev) self.drawTo(Point3(ev + Point3(a2x, a2y, z))) def drawArrow2d(self, sv, ev, arrowAngle, arrowLength): """ Do the work of moving the cursor around to draw an arrow from sv to ev. Hack: the arrows take the z value of the end point """ self.moveTo(sv) self.drawTo(ev) v = sv - ev # Find the angle of the line angle = math.atan2(v[2], v[0]) # Get the arrow angles a1 = angle + deg2Rad(arrowAngle) a2 = angle - deg2Rad(arrowAngle) # Get the arrow points a1x = arrowLength * math.cos(a1) a1y = arrowLength * math.sin(a1) a2x = arrowLength * math.cos(a2) a2y = arrowLength * math.sin(a2) self.moveTo(ev) self.drawTo(Point3(ev + Point3(a1x, 0.0, a1y))) self.moveTo(ev) self.drawTo(Point3(ev + Point3(a2x, 0.0, a2y))) def drawLines(self, lineList): """ Given a list of lists of points, draw a separate line for each list """ for pointList in lineList: apply(self.moveTo, pointList[0]) for point in pointList[1:]: apply(self.drawTo, point) ## ## Given a point in space, and a direction, find the point of intersection ## of that ray with a plane at the specified origin, with the specified normal def planeIntersect (lineOrigin, lineDir, planeOrigin, normal): t = 0 offset = planeOrigin - lineOrigin t = offset.dot(normal) / lineDir.dot(normal) hitPt = lineDir * t return hitPt + lineOrigin def getNearProjectionPoint(nodePath): # Find the position of the projection of the specified node path # on the near plane origin = nodePath.getPos(base.direct.camera) # project this onto near plane if origin[1] != 0.0: return origin * (base.direct.dr.near / origin[1]) else: # Object is coplaner with camera, just return something reasonable return Point3(0, base.direct.dr.near, 0) def getScreenXY(nodePath): # Where does the node path's projection fall on the near plane nearVec = getNearProjectionPoint(nodePath) # Clamp these coordinates to visible screen nearX = CLAMP(nearVec[0], base.direct.dr.left, base.direct.dr.right) nearY = CLAMP(nearVec[2], base.direct.dr.bottom, base.direct.dr.top) # What percentage of the distance across the screen is this? percentX = (nearX - base.direct.dr.left)/base.direct.dr.nearWidth percentY = (nearY - base.direct.dr.bottom)/base.direct.dr.nearHeight # Map this percentage to the same -1 to 1 space as the mouse screenXY = Vec3((2 * percentX) - 1.0, nearVec[1], (2 * percentY) - 1.0) # Return the resulting value return screenXY def getCrankAngle(center): # Used to compute current angle of mouse (relative to the coa's # origin) in screen space x = base.direct.dr.mouseX - center[0] y = base.direct.dr.mouseY - center[2] return (180 + rad2Deg(math.atan2(y, x))) def relHpr(nodePath, base, h, p, r): # Compute nodePath2newNodePath relative to base coordinate system # nodePath2base mNodePath2Base = nodePath.getMat(base) # delta scale, orientation, and position matrix mBase2NewBase = Mat4(Mat4.identMat()) # [gjeon] fixed to give required argument composeMatrix(mBase2NewBase, UNIT_VEC, VBase3(h, p, r), ZERO_VEC, CSDefault) # base2nodePath mBase2NodePath = base.getMat(nodePath) # nodePath2 Parent mNodePath2Parent = nodePath.getMat() # Compose the result resultMat = mNodePath2Base * mBase2NewBase resultMat = resultMat * mBase2NodePath resultMat = resultMat * mNodePath2Parent # Extract and apply the hpr hpr = Vec3(0) decomposeMatrix(resultMat, VBase3(), hpr, VBase3(), CSDefault) nodePath.setHpr(hpr) # Quaternion interpolation def qSlerp(startQuat, endQuat, t): startQ = Quat(startQuat) destQuat = Quat(Quat.identQuat()) # Calc dot product cosOmega = (startQ.getI() * endQuat.getI() + startQ.getJ() * endQuat.getJ() + startQ.getK() * endQuat.getK() + startQ.getR() * endQuat.getR()) # If the above dot product is negative, it would be better to # go between the negative of the initial and the final, so that # we take the shorter path. if cosOmega < 0.0: cosOmega *= -1 startQ.setI(-1 * startQ.getI()) startQ.setJ(-1 * startQ.getJ()) startQ.setK(-1 * startQ.getK()) startQ.setR(-1 * startQ.getR()) if ((1.0 + cosOmega) > Q_EPSILON): # usual case if ((1.0 - cosOmega) > Q_EPSILON): # usual case omega = math.acos(cosOmega) sinOmega = math.sin(omega) startScale = math.sin((1.0 - t) * omega)/sinOmega endScale = math.sin(t * omega)/sinOmega else: # ends very close startScale = 1.0 - t endScale = t destQuat.setI(startScale * startQ.getI() + endScale * endQuat.getI()) destQuat.setJ(startScale * startQ.getJ() + endScale * endQuat.getJ()) destQuat.setK(startScale * startQ.getK() + endScale * endQuat.getK()) destQuat.setR(startScale * startQ.getR() + endScale * endQuat.getR()) else: # ends nearly opposite destQuat.setI(-startQ.getJ()) destQuat.setJ(startQ.getI()) destQuat.setK(-startQ.getR()) destQuat.setR(startQ.getK()) startScale = math.sin((0.5 - t) * math.pi) endScale = math.sin(t * math.pi) destQuat.setI(startScale * startQ.getI() + endScale * endQuat.getI()) destQuat.setJ(startScale * startQ.getJ() + endScale * endQuat.getJ()) destQuat.setK(startScale * startQ.getK() + endScale * endQuat.getK()) return destQuat