"""Greenlet-local objects. This module is based on `_threading_local.py`__ from the standard library. __ http://svn.python.org/view/python/trunk/Lib/_threading_local.py?view=markup&pathrev=78336 Greenlet-local objects support the management of greenlet-local data. If you have data that you want to be local to a greenlet, simply create a greenlet-local object and use its attributes: >>> mydata = local() >>> mydata.number = 42 >>> mydata.number 42 You can also access the local-object's dictionary: >>> mydata.__dict__ {'number': 42} >>> mydata.__dict__.setdefault('widgets', []) [] >>> mydata.widgets [] What's important about greenlet-local objects is that their data are local to a greenlet. If we access the data in a different greenlet: >>> log = [] >>> def f(): ... items = mydata.__dict__.items() ... items.sort() ... log.append(items) ... mydata.number = 11 ... log.append(mydata.number) >>> greenlet = gevent.spawn(f) >>> greenlet.join() >>> log [[], 11] we get different data. Furthermore, changes made in the other greenlet don't affect data seen in this greenlet: >>> mydata.number 42 Of course, values you get from a local object, including a __dict__ attribute, are for whatever greenlet was current at the time the attribute was read. For that reason, you generally don't want to save these values across greenlets, as they apply only to the greenlet they came from. You can create custom local objects by subclassing the local class: >>> class MyLocal(local): ... number = 2 ... initialized = False ... def __init__(self, **kw): ... if self.initialized: ... raise SystemError('__init__ called too many times') ... self.initialized = True ... self.__dict__.update(kw) ... def squared(self): ... return self.number ** 2 This can be useful to support default values, methods and initialization. Note that if you define an __init__ method, it will be called each time the local object is used in a separate greenlet. This is necessary to initialize each greenlet's dictionary. Now if we create a local object: >>> mydata = MyLocal(color='red') Now we have a default number: >>> mydata.number 2 an initial color: >>> mydata.color 'red' >>> del mydata.color And a method that operates on the data: >>> mydata.squared() 4 As before, we can access the data in a separate greenlet: >>> log = [] >>> greenlet = gevent.spawn(f) >>> greenlet.join() >>> log [[('color', 'red'), ('initialized', True)], 11] without affecting this greenlet's data: >>> mydata.number 2 >>> mydata.color Traceback (most recent call last): ... AttributeError: 'MyLocal' object has no attribute 'color' Note that subclasses can define slots, but they are not greenlet local. They are shared across greenlets:: >>> class MyLocal(local): ... __slots__ = 'number' >>> mydata = MyLocal() >>> mydata.number = 42 >>> mydata.color = 'red' So, the separate greenlet: >>> greenlet = gevent.spawn(f) >>> greenlet.join() affects what we see: >>> mydata.number 11 >>> del mydata """ from weakref import WeakKeyDictionary from copy import copy from gevent.hub import getcurrent from gevent.lock import RLock __all__ = ["local"] class _localbase(object): __slots__ = '_local__args', '_local__lock', '_local__dicts' def __new__(cls, *args, **kw): self = object.__new__(cls) object.__setattr__(self, '_local__args', (args, kw)) object.__setattr__(self, '_local__lock', RLock()) dicts = WeakKeyDictionary() object.__setattr__(self, '_local__dicts', dicts) if (args or kw) and (cls.__init__ is object.__init__): raise TypeError("Initialization arguments are not supported") # We need to create the greenlet dict in anticipation of # __init__ being called, to make sure we don't call it again ourselves. dict = object.__getattribute__(self, '__dict__') dicts[getcurrent()] = dict return self def _init_locals(self): d = {} dicts = object.__getattribute__(self, '_local__dicts') dicts[getcurrent()] = d object.__setattr__(self, '__dict__', d) # we have a new instance dict, so call out __init__ if we have one cls = type(self) if cls.__init__ is not object.__init__: args, kw = object.__getattribute__(self, '_local__args') cls.__init__(self, *args, **kw) class local(_localbase): def __getattribute__(self, name): d = object.__getattribute__(self, '_local__dicts').get(getcurrent()) if d is None: # it's OK to acquire the lock here and not earlier, because the above code won't switch out # however, subclassed __init__ might switch, so we do need to acquire the lock here lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _init_locals(self) return object.__getattribute__(self, name) finally: lock.release() else: object.__setattr__(self, '__dict__', d) return object.__getattribute__(self, name) def __setattr__(self, name, value): if name == '__dict__': raise AttributeError("%r object attribute '__dict__' is read-only" % self.__class__.__name__) d = object.__getattribute__(self, '_local__dicts').get(getcurrent()) if d is None: lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _init_locals(self) return object.__setattr__(self, name, value) finally: lock.release() else: object.__setattr__(self, '__dict__', d) return object.__setattr__(self, name, value) def __delattr__(self, name): if name == '__dict__': raise AttributeError("%r object attribute '__dict__' is read-only" % self.__class__.__name__) d = object.__getattribute__(self, '_local__dicts').get(getcurrent()) if d is None: lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _init_locals(self) return object.__delattr__(self, name) finally: lock.release() else: object.__setattr__(self, '__dict__', d) return object.__delattr__(self, name) def __copy__(self): currentId = getcurrent() d = object.__getattribute__(self, '_local__dicts').get(currentId) duplicate = copy(d) cls = type(self) if cls.__init__ is not object.__init__: args, kw = object.__getattribute__(self, '_local__args') instance = cls(*args, **kw) else: instance = cls() object.__setattr__(instance, '_local__dicts', { currentId: duplicate }) return instance