mirror of
https://github.com/Sneed-Group/Poodletooth-iLand
synced 2025-01-09 17:53:50 +00:00
295 lines
13 KiB
Python
Executable file
295 lines
13 KiB
Python
Executable file
# -*- coding: utf-8 -*-
|
|
#
|
|
# SelfTest/Util/test_number.py: Self-test for parts of the Crypto.Util.number module
|
|
#
|
|
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
|
#
|
|
# ===================================================================
|
|
# The contents of this file are dedicated to the public domain. To
|
|
# the extent that dedication to the public domain is not available,
|
|
# everyone is granted a worldwide, perpetual, royalty-free,
|
|
# non-exclusive license to exercise all rights associated with the
|
|
# contents of this file for any purpose whatsoever.
|
|
# No rights are reserved.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
# ===================================================================
|
|
|
|
"""Self-tests for (some of) Crypto.Util.number"""
|
|
|
|
__revision__ = "$Id$"
|
|
|
|
import sys
|
|
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
|
from Crypto.Util.py21compat import *
|
|
|
|
import unittest
|
|
|
|
# NB: In some places, we compare tuples instead of just output values so that
|
|
# if any inputs cause a test failure, we'll be able to tell which ones.
|
|
|
|
class MiscTests(unittest.TestCase):
|
|
def setUp(self):
|
|
global number, math
|
|
from Crypto.Util import number
|
|
import math
|
|
|
|
def test_ceil_shift(self):
|
|
"""Util.number.ceil_shift"""
|
|
self.assertRaises(AssertionError, number.ceil_shift, -1, 1)
|
|
self.assertRaises(AssertionError, number.ceil_shift, 1, -1)
|
|
|
|
# b = 0
|
|
self.assertEqual(0, number.ceil_shift(0, 0))
|
|
self.assertEqual(1, number.ceil_shift(1, 0))
|
|
self.assertEqual(2, number.ceil_shift(2, 0))
|
|
self.assertEqual(3, number.ceil_shift(3, 0))
|
|
|
|
# b = 1
|
|
self.assertEqual(0, number.ceil_shift(0, 1))
|
|
self.assertEqual(1, number.ceil_shift(1, 1))
|
|
self.assertEqual(1, number.ceil_shift(2, 1))
|
|
self.assertEqual(2, number.ceil_shift(3, 1))
|
|
|
|
# b = 2
|
|
self.assertEqual(0, number.ceil_shift(0, 2))
|
|
self.assertEqual(1, number.ceil_shift(1, 2))
|
|
self.assertEqual(1, number.ceil_shift(2, 2))
|
|
self.assertEqual(1, number.ceil_shift(3, 2))
|
|
self.assertEqual(1, number.ceil_shift(4, 2))
|
|
self.assertEqual(2, number.ceil_shift(5, 2))
|
|
self.assertEqual(2, number.ceil_shift(6, 2))
|
|
self.assertEqual(2, number.ceil_shift(7, 2))
|
|
self.assertEqual(2, number.ceil_shift(8, 2))
|
|
self.assertEqual(3, number.ceil_shift(9, 2))
|
|
|
|
for b in range(3, 1+129, 3): # 3, 6, ... , 129
|
|
self.assertEqual(0, number.ceil_shift(0, b))
|
|
|
|
n = 1L
|
|
while n <= 2L**(b+2):
|
|
(q, r) = divmod(n-1, 2L**b)
|
|
expected = q + int(not not r)
|
|
self.assertEqual((n-1, b, expected),
|
|
(n-1, b, number.ceil_shift(n-1, b)))
|
|
|
|
(q, r) = divmod(n, 2L**b)
|
|
expected = q + int(not not r)
|
|
self.assertEqual((n, b, expected),
|
|
(n, b, number.ceil_shift(n, b)))
|
|
|
|
(q, r) = divmod(n+1, 2L**b)
|
|
expected = q + int(not not r)
|
|
self.assertEqual((n+1, b, expected),
|
|
(n+1, b, number.ceil_shift(n+1, b)))
|
|
|
|
n *= 2
|
|
|
|
def test_ceil_div(self):
|
|
"""Util.number.ceil_div"""
|
|
self.assertRaises(TypeError, number.ceil_div, "1", 1)
|
|
self.assertRaises(ZeroDivisionError, number.ceil_div, 1, 0)
|
|
self.assertRaises(ZeroDivisionError, number.ceil_div, -1, 0)
|
|
|
|
# b = -1
|
|
self.assertEqual(0, number.ceil_div(0, -1))
|
|
self.assertEqual(-1, number.ceil_div(1, -1))
|
|
self.assertEqual(-2, number.ceil_div(2, -1))
|
|
self.assertEqual(-3, number.ceil_div(3, -1))
|
|
|
|
# b = 1
|
|
self.assertEqual(0, number.ceil_div(0, 1))
|
|
self.assertEqual(1, number.ceil_div(1, 1))
|
|
self.assertEqual(2, number.ceil_div(2, 1))
|
|
self.assertEqual(3, number.ceil_div(3, 1))
|
|
|
|
# b = 2
|
|
self.assertEqual(0, number.ceil_div(0, 2))
|
|
self.assertEqual(1, number.ceil_div(1, 2))
|
|
self.assertEqual(1, number.ceil_div(2, 2))
|
|
self.assertEqual(2, number.ceil_div(3, 2))
|
|
self.assertEqual(2, number.ceil_div(4, 2))
|
|
self.assertEqual(3, number.ceil_div(5, 2))
|
|
|
|
# b = 3
|
|
self.assertEqual(0, number.ceil_div(0, 3))
|
|
self.assertEqual(1, number.ceil_div(1, 3))
|
|
self.assertEqual(1, number.ceil_div(2, 3))
|
|
self.assertEqual(1, number.ceil_div(3, 3))
|
|
self.assertEqual(2, number.ceil_div(4, 3))
|
|
self.assertEqual(2, number.ceil_div(5, 3))
|
|
self.assertEqual(2, number.ceil_div(6, 3))
|
|
self.assertEqual(3, number.ceil_div(7, 3))
|
|
|
|
# b = 4
|
|
self.assertEqual(0, number.ceil_div(0, 4))
|
|
self.assertEqual(1, number.ceil_div(1, 4))
|
|
self.assertEqual(1, number.ceil_div(2, 4))
|
|
self.assertEqual(1, number.ceil_div(3, 4))
|
|
self.assertEqual(1, number.ceil_div(4, 4))
|
|
self.assertEqual(2, number.ceil_div(5, 4))
|
|
self.assertEqual(2, number.ceil_div(6, 4))
|
|
self.assertEqual(2, number.ceil_div(7, 4))
|
|
self.assertEqual(2, number.ceil_div(8, 4))
|
|
self.assertEqual(3, number.ceil_div(9, 4))
|
|
|
|
# b = -4
|
|
self.assertEqual(3, number.ceil_div(-9, -4))
|
|
self.assertEqual(2, number.ceil_div(-8, -4))
|
|
self.assertEqual(2, number.ceil_div(-7, -4))
|
|
self.assertEqual(2, number.ceil_div(-6, -4))
|
|
self.assertEqual(2, number.ceil_div(-5, -4))
|
|
self.assertEqual(1, number.ceil_div(-4, -4))
|
|
self.assertEqual(1, number.ceil_div(-3, -4))
|
|
self.assertEqual(1, number.ceil_div(-2, -4))
|
|
self.assertEqual(1, number.ceil_div(-1, -4))
|
|
self.assertEqual(0, number.ceil_div(0, -4))
|
|
self.assertEqual(0, number.ceil_div(1, -4))
|
|
self.assertEqual(0, number.ceil_div(2, -4))
|
|
self.assertEqual(0, number.ceil_div(3, -4))
|
|
self.assertEqual(-1, number.ceil_div(4, -4))
|
|
self.assertEqual(-1, number.ceil_div(5, -4))
|
|
self.assertEqual(-1, number.ceil_div(6, -4))
|
|
self.assertEqual(-1, number.ceil_div(7, -4))
|
|
self.assertEqual(-2, number.ceil_div(8, -4))
|
|
self.assertEqual(-2, number.ceil_div(9, -4))
|
|
|
|
def test_exact_log2(self):
|
|
"""Util.number.exact_log2"""
|
|
self.assertRaises(TypeError, number.exact_log2, "0")
|
|
self.assertRaises(ValueError, number.exact_log2, -1)
|
|
self.assertRaises(ValueError, number.exact_log2, 0)
|
|
self.assertEqual(0, number.exact_log2(1))
|
|
self.assertEqual(1, number.exact_log2(2))
|
|
self.assertRaises(ValueError, number.exact_log2, 3)
|
|
self.assertEqual(2, number.exact_log2(4))
|
|
self.assertRaises(ValueError, number.exact_log2, 5)
|
|
self.assertRaises(ValueError, number.exact_log2, 6)
|
|
self.assertRaises(ValueError, number.exact_log2, 7)
|
|
e = 3
|
|
n = 8
|
|
while e < 16:
|
|
if n == 2**e:
|
|
self.assertEqual(e, number.exact_log2(n), "expected=2**%d, n=%d" % (e, n))
|
|
e += 1
|
|
else:
|
|
self.assertRaises(ValueError, number.exact_log2, n)
|
|
n += 1
|
|
|
|
for e in range(16, 1+64, 2):
|
|
self.assertRaises(ValueError, number.exact_log2, 2L**e-1)
|
|
self.assertEqual(e, number.exact_log2(2L**e))
|
|
self.assertRaises(ValueError, number.exact_log2, 2L**e+1)
|
|
|
|
def test_exact_div(self):
|
|
"""Util.number.exact_div"""
|
|
|
|
# Positive numbers
|
|
self.assertEqual(1, number.exact_div(1, 1))
|
|
self.assertRaises(ValueError, number.exact_div, 1, 2)
|
|
self.assertEqual(1, number.exact_div(2, 2))
|
|
self.assertRaises(ValueError, number.exact_div, 3, 2)
|
|
self.assertEqual(2, number.exact_div(4, 2))
|
|
|
|
# Negative numbers
|
|
self.assertEqual(-1, number.exact_div(-1, 1))
|
|
self.assertEqual(-1, number.exact_div(1, -1))
|
|
self.assertRaises(ValueError, number.exact_div, -1, 2)
|
|
self.assertEqual(1, number.exact_div(-2, -2))
|
|
self.assertEqual(-2, number.exact_div(-4, 2))
|
|
|
|
# Zero dividend
|
|
self.assertEqual(0, number.exact_div(0, 1))
|
|
self.assertEqual(0, number.exact_div(0, 2))
|
|
|
|
# Zero divisor (allow_divzero == False)
|
|
self.assertRaises(ZeroDivisionError, number.exact_div, 0, 0)
|
|
self.assertRaises(ZeroDivisionError, number.exact_div, 1, 0)
|
|
|
|
# Zero divisor (allow_divzero == True)
|
|
self.assertEqual(0, number.exact_div(0, 0, allow_divzero=True))
|
|
self.assertRaises(ValueError, number.exact_div, 1, 0, allow_divzero=True)
|
|
|
|
def test_floor_div(self):
|
|
"""Util.number.floor_div"""
|
|
self.assertRaises(TypeError, number.floor_div, "1", 1)
|
|
for a in range(-10, 10):
|
|
for b in range(-10, 10):
|
|
if b == 0:
|
|
self.assertRaises(ZeroDivisionError, number.floor_div, a, b)
|
|
else:
|
|
self.assertEqual((a, b, int(math.floor(float(a) / b))),
|
|
(a, b, number.floor_div(a, b)))
|
|
|
|
def test_getStrongPrime(self):
|
|
"""Util.number.getStrongPrime"""
|
|
self.assertRaises(ValueError, number.getStrongPrime, 256)
|
|
self.assertRaises(ValueError, number.getStrongPrime, 513)
|
|
bits = 512
|
|
x = number.getStrongPrime(bits)
|
|
self.assertNotEqual(x % 2, 0)
|
|
self.assertEqual(x > (1L << bits-1)-1, 1)
|
|
self.assertEqual(x < (1L << bits), 1)
|
|
e = 2**16+1
|
|
x = number.getStrongPrime(bits, e)
|
|
self.assertEqual(number.GCD(x-1, e), 1)
|
|
self.assertNotEqual(x % 2, 0)
|
|
self.assertEqual(x > (1L << bits-1)-1, 1)
|
|
self.assertEqual(x < (1L << bits), 1)
|
|
e = 2**16+2
|
|
x = number.getStrongPrime(bits, e)
|
|
self.assertEqual(number.GCD((x-1)>>1, e), 1)
|
|
self.assertNotEqual(x % 2, 0)
|
|
self.assertEqual(x > (1L << bits-1)-1, 1)
|
|
self.assertEqual(x < (1L << bits), 1)
|
|
|
|
def test_isPrime(self):
|
|
"""Util.number.isPrime"""
|
|
self.assertEqual(number.isPrime(-3), False) # Regression test: negative numbers should not be prime
|
|
self.assertEqual(number.isPrime(-2), False) # Regression test: negative numbers should not be prime
|
|
self.assertEqual(number.isPrime(1), False) # Regression test: isPrime(1) caused some versions of PyCrypto to crash.
|
|
self.assertEqual(number.isPrime(2), True)
|
|
self.assertEqual(number.isPrime(3), True)
|
|
self.assertEqual(number.isPrime(4), False)
|
|
self.assertEqual(number.isPrime(2L**1279-1), True)
|
|
self.assertEqual(number.isPrime(-(2L**1279-1)), False) # Regression test: negative numbers should not be prime
|
|
# test some known gmp pseudo-primes taken from
|
|
# http://www.trnicely.net/misc/mpzspsp.html
|
|
for composite in (43 * 127 * 211, 61 * 151 * 211, 15259 * 30517,
|
|
346141L * 692281L, 1007119L * 2014237L, 3589477L * 7178953L,
|
|
4859419L * 9718837L, 2730439L * 5460877L,
|
|
245127919L * 490255837L, 963939391L * 1927878781L,
|
|
4186358431L * 8372716861L, 1576820467L * 3153640933L):
|
|
self.assertEqual(number.isPrime(long(composite)), False)
|
|
|
|
def test_size(self):
|
|
self.assertEqual(number.size(2),2)
|
|
self.assertEqual(number.size(3),2)
|
|
self.assertEqual(number.size(0xa2),8)
|
|
self.assertEqual(number.size(0xa2ba40),8*3)
|
|
self.assertEqual(number.size(0xa2ba40ee07e3b2bd2f02ce227f36a195024486e49c19cb41bbbdfbba98b22b0e577c2eeaffa20d883a76e65e394c69d4b3c05a1e8fadda27edb2a42bc000fe888b9b32c22d15add0cd76b3e7936e19955b220dd17d4ea904b1ec102b2e4de7751222aa99151024c7cb41cc5ea21d00eeb41f7c800834d2c6e06bce3bce7ea9a5L), 1024)
|
|
|
|
def test_negative_number_roundtrip_mpzToLongObj_longObjToMPZ(self):
|
|
"""Test that mpzToLongObj and longObjToMPZ (internal functions) roundtrip negative numbers correctly."""
|
|
n = -100000000000000000000000000000000000L
|
|
e = 2L
|
|
k = number._fastmath.rsa_construct(n, e)
|
|
self.assertEqual(n, k.n)
|
|
self.assertEqual(e, k.e)
|
|
|
|
def get_tests(config={}):
|
|
from Crypto.SelfTest.st_common import list_test_cases
|
|
return list_test_cases(MiscTests)
|
|
|
|
if __name__ == '__main__':
|
|
suite = lambda: unittest.TestSuite(get_tests())
|
|
unittest.main(defaultTest='suite')
|
|
|
|
# vim:set ts=4 sw=4 sts=4 expandtab:
|