mirror of
https://github.com/Sneed-Group/RobloxPotatoes
synced 2025-01-09 17:33:37 +00:00
first commit
This commit is contained in:
commit
1df2271308
1 changed files with 73 additions and 0 deletions
73
aimbot.py
Normal file
73
aimbot.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
import tensorflow as tf
|
||||
import tensorflow_hub as hub
|
||||
import numpy as np
|
||||
import pyautogui
|
||||
import win32api, win32con, win32gui
|
||||
import cv2
|
||||
import math
|
||||
import time
|
||||
|
||||
detector = hub.load("https://tfhub.dev/tensorflow/centernet/resnet50v1_fpn_512x512/1")
|
||||
size_scale = 3
|
||||
|
||||
while True:
|
||||
# Get rect of Window
|
||||
hwnd = win32gui.FindWindow(None, 'Counter-Strike: Global Offensive')
|
||||
rect = win32gui.GetWindowRect(hwnd)
|
||||
region = rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1]
|
||||
|
||||
# Get image of screen
|
||||
image = np.array(pyautogui.screenshot(region=region))
|
||||
image = cv2.resize(image, (image.shape[1] // size_scale, image.shape[0] // size_scale))
|
||||
image = np.expand_dims(image, 0)
|
||||
img_w, img_h = image.shape[2], image.shape[1]
|
||||
|
||||
# Detection
|
||||
result = detector(image)
|
||||
result = {key:value.numpy() for key,value in result.items()}
|
||||
boxes = result['detection_boxes'][0]
|
||||
scores = result['detection_scores'][0]
|
||||
classes = result['detection_classes'][0]
|
||||
|
||||
# Check every detected object
|
||||
detected_boxes = []
|
||||
for i, box in enumerate(boxes):
|
||||
# Choose only person(class:1)
|
||||
if classes[i] == 1 and scores[i] >= 0.5:
|
||||
ymin, xmin, ymax, xmax = tuple(box)
|
||||
if ymin > 0.5 and ymax > 0.8:
|
||||
continue
|
||||
left, right, top, bottom = int(xmin * img_w), int(xmax * img_w), int(ymin * img_h), int(ymax * img_h)
|
||||
detected_boxes.append((left, right, top, bottom))
|
||||
|
||||
print("Detected:", len(detected_boxes))
|
||||
|
||||
# Check Closest
|
||||
if len(detected_boxes) >= 1:
|
||||
min = 99999
|
||||
at = 0
|
||||
centers = []
|
||||
for i, box in enumerate(detected_boxes):
|
||||
x1, x2, y1, y2 = box
|
||||
c_x = ((x2 - x1) / 2) + x1
|
||||
c_y = ((y2 - y1) / 2) + y1
|
||||
centers.append((c_x, c_y))
|
||||
dist = math.sqrt(math.pow(img_w/2 - c_x, 2) + math.pow(img_h/2 - c_y, 2))
|
||||
if dist < min:
|
||||
min = dist
|
||||
at = i
|
||||
|
||||
x = centers[at][0] - img_w/2
|
||||
y = centers[at][1] - img_h/2 - (detected_boxes[at][3] - detected_boxes[at][2]) * 0.45
|
||||
|
||||
# Move mouse and shoot
|
||||
scale = 1.7 * size_scale
|
||||
x = int(x * scale)
|
||||
y = int(y * scale)
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, x, y, 0, 0)
|
||||
time.sleep(0.05)
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x, y, 0, 0)
|
||||
time.sleep(0.1)
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0)
|
||||
|
||||
time.sleep(0.1)
|
Loading…
Reference in a new issue