mirror of
https://github.com/Sneed-Group/RobloxPotatoes
synced 2024-12-23 19:32:38 -06:00
Add files via upload
This commit is contained in:
parent
2cae5e6c12
commit
3586a17c2c
1 changed files with 73 additions and 12 deletions
83
aimbot.py
83
aimbot.py
|
@ -1,16 +1,81 @@
|
||||||
import tensorflow as tf
|
|
||||||
import tensorflow_hub as hub
|
|
||||||
import numpy as np
|
|
||||||
import pyautogui
|
import pyautogui
|
||||||
import win32api, win32con, win32gui
|
import win32api, win32con, win32gui
|
||||||
import cv2
|
import cv2
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
from threading import Lock
|
||||||
|
|
||||||
|
# printing only warnings and error messages
|
||||||
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"
|
||||||
|
|
||||||
|
try:
|
||||||
|
import tensorflow as tf
|
||||||
|
from PIL import Image
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("ERROR: Failed to import libraries. Please refer to READEME.md file\n")
|
||||||
|
|
||||||
|
EXPORT_MODEL_VERSION = 1
|
||||||
|
|
||||||
|
|
||||||
|
class TFModel:
|
||||||
|
def __init__(self, dir_path) -> None:
|
||||||
|
# Assume model is in the parent directory for this file
|
||||||
|
self.model_dir = os.path.dirname(dir_path)
|
||||||
|
# make sure our exported SavedModel folder exists
|
||||||
|
with open(os.path.join(self.model_dir, "signature.json"), "r") as f:
|
||||||
|
self.signature = json.load(f)
|
||||||
|
self.model_file = os.path.join(self.model_dir, self.signature.get("filename"))
|
||||||
|
if not os.path.isfile(self.model_file):
|
||||||
|
raise FileNotFoundError(f"Model file does not exist")
|
||||||
|
self.inputs = self.signature.get("inputs")
|
||||||
|
self.outputs = self.signature.get("outputs")
|
||||||
|
self.lock = Lock()
|
||||||
|
|
||||||
|
# loading the saved model
|
||||||
|
self.model = tf.saved_model.load(tags=self.signature.get("tags"), export_dir=self.model_dir)
|
||||||
|
self.predict_fn = self.model.signatures["serving_default"]
|
||||||
|
|
||||||
|
# Look for the version in signature file.
|
||||||
|
# If it's not found or the doesn't match expected, print a message
|
||||||
|
version = self.signature.get("export_model_version")
|
||||||
|
if version is None or version != EXPORT_MODEL_VERSION:
|
||||||
|
print(
|
||||||
|
f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}."
|
||||||
|
)
|
||||||
|
|
||||||
|
def predict(self, image: Image.Image) -> dict:
|
||||||
|
with self.lock:
|
||||||
|
# create the feed dictionary that is the input to the model
|
||||||
|
feed_dict = {}
|
||||||
|
# first, add our image to the dictionary (comes from our signature.json file)
|
||||||
|
feed_dict[list(self.inputs.keys())[0]] = tf.convert_to_tensor(image)
|
||||||
|
# run the model!
|
||||||
|
outputs = self.predict_fn(**feed_dict)
|
||||||
|
# return the processed output
|
||||||
|
return self.process_output(outputs)
|
||||||
|
|
||||||
|
def process_output(self, outputs) -> dict:
|
||||||
|
# do a bit of postprocessing
|
||||||
|
out_keys = ["label", "confidence"]
|
||||||
|
results = {}
|
||||||
|
# since we actually ran on a batch of size 1, index out the items from the returned numpy arrays
|
||||||
|
for key, tf_val in outputs.items():
|
||||||
|
val = tf_val.numpy().tolist()[0]
|
||||||
|
if isinstance(val, bytes):
|
||||||
|
val = val.decode()
|
||||||
|
results[key] = val
|
||||||
|
confs = results["Confidences"]
|
||||||
|
labels = self.signature.get("classes").get("Label")
|
||||||
|
output = [dict(zip(out_keys, group)) for group in zip(labels, confs)]
|
||||||
|
sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)}
|
||||||
|
return sorted_output
|
||||||
|
|
||||||
dirname = os.path.dirname(__file__)
|
|
||||||
detector = tf.saved_model.load(dirname)
|
|
||||||
size_scale = 3
|
size_scale = 3
|
||||||
|
model = TFModel(dir_path=os.path.dirname(__file__))
|
||||||
while True:
|
while True:
|
||||||
# Get rect of Window
|
# Get rect of Window
|
||||||
hwnd = win32gui.FindWindow(None, 'Roblox')
|
hwnd = win32gui.FindWindow(None, 'Roblox')
|
||||||
|
@ -25,7 +90,7 @@ while True:
|
||||||
img_w, img_h = image.shape[2], image.shape[1]
|
img_w, img_h = image.shape[2], image.shape[1]
|
||||||
|
|
||||||
# Detection
|
# Detection
|
||||||
result = detector(image)
|
outputs = model.predict(image)
|
||||||
result = {key:value.numpy() for key,value in result.items()}
|
result = {key:value.numpy() for key,value in result.items()}
|
||||||
boxes = result['detection_boxes'][0]
|
boxes = result['detection_boxes'][0]
|
||||||
scores = result['detection_scores'][0]
|
scores = result['detection_scores'][0]
|
||||||
|
@ -75,8 +140,4 @@ while True:
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0)
|
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0)
|
||||||
|
|
||||||
#ori_img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB)
|
|
||||||
#cv2.imshow("ori_img", ori_img)
|
|
||||||
#cv2.waitKey(1)
|
|
||||||
|
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
Loading…
Reference in a new issue