import pyautogui import win32api, win32con, win32gui import cv2 import math import time import argparse import os import json import numpy as np from threading import Lock # printing only warnings and error messages os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" try: import tensorflow as tf from PIL import Image except ImportError: raise ImportError("ERROR: Failed to import libraries. Please refer to READEME.md file\n") EXPORT_MODEL_VERSION = 1 class TFModel: def __init__(self, dir_path) -> None: # Assume model is in the parent directory for this file self.model_dir = os.path.dirname(dir_path) # make sure our exported SavedModel folder exists with open(os.path.join(self.model_dir, "signature.json"), "r") as f: self.signature = json.load(f) self.model_file = os.path.join(self.model_dir, self.signature.get("filename")) if not os.path.isfile(self.model_file): raise FileNotFoundError(f"Model file does not exist") self.inputs = self.signature.get("inputs") self.outputs = self.signature.get("outputs") self.lock = Lock() # loading the saved model self.model = tf.saved_model.load(tags=self.signature.get("tags"), export_dir=self.model_dir) self.predict_fn = self.model.signatures["serving_default"] # Look for the version in signature file. # If it's not found or the doesn't match expected, print a message version = self.signature.get("export_model_version") if version is None or version != EXPORT_MODEL_VERSION: print( f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}." ) def predict(self, image: Image.Image) -> dict: with self.lock: # create the feed dictionary that is the input to the model feed_dict = {} # first, add our image to the dictionary (comes from our signature.json file) feed_dict[list(self.inputs.keys())[0]] = tf.convert_to_tensor(image) # run the model! outputs = self.predict_fn(**feed_dict) # return the processed output return self.process_output(outputs) def process_output(self, outputs) -> dict: # do a bit of postprocessing out_keys = ["label", "confidence"] results = {} # since we actually ran on a batch of size 1, index out the items from the returned numpy arrays for key, tf_val in outputs.items(): val = tf_val.numpy().tolist()[0] if isinstance(val, bytes): val = val.decode() results[key] = val confs = results["Confidences"] labels = self.signature.get("classes").get("Label") output = [dict(zip(out_keys, group)) for group in zip(labels, confs)] sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)} return sorted_output size_scale = 3 model = TFModel(dir_path=os.path.dirname(__file__)) while True: # Get rect of Window hwnd = win32gui.FindWindow(None, 'Roblox') #hwnd = win32gui.FindWindow("UnrealWindow", None) # Fortnite rect = win32gui.GetWindowRect(hwnd) region = rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1] # Get image of screen ori_img = np.array(pyautogui.screenshot(region=region)) ori_img = cv2.resize(ori_img, (ori_img.shape[1] // size_scale, ori_img.shape[0] // size_scale)) image = np.expand_dims(ori_img, 0) img_w, img_h = image.shape[2], image.shape[1] # Detection outputs = model.predict(image) result = {key:value.numpy() for key,value in result.items()} boxes = result['detection_boxes'][0] scores = result['detection_scores'][0] classes = result['detection_classes'][0] # Check every detected object detected_boxes = [] for i, box in enumerate(boxes): # Choose only person(class:1) if classes[i] == 1 and scores[i] >= 0.5: ymin, xmin, ymax, xmax = tuple(box) if ymin > 0.5 and ymax > 0.8: # CS:Go #if int(xmin * img_w * 3) < 450: # Fortnite continue left, right, top, bottom = int(xmin * img_w), int(xmax * img_w), int(ymin * img_h), int(ymax * img_h) detected_boxes.append((left, right, top, bottom)) #cv2.rectangle(ori_img, (left, top), (right, bottom), (255, 255, 0), 2) print("Detected:", len(detected_boxes)) # Check Closest if len(detected_boxes) >= 1: min = 99999 at = 0 centers = [] for i, box in enumerate(detected_boxes): x1, x2, y1, y2 = box c_x = ((x2 - x1) / 2) + x1 c_y = ((y2 - y1) / 2) + y1 centers.append((c_x, c_y)) dist = math.sqrt(math.pow(img_w/2 - c_x, 2) + math.pow(img_h/2 - c_y, 2)) if dist < min: min = dist at = i # Pixel difference between crosshair(center) and the closest object x = centers[at][0] - img_w/2 y = centers[at][1] - img_h/2 - (detected_boxes[at][3] - detected_boxes[at][2]) * 0.45 # Move mouse and shoot scale = 1.7 * size_scale x = int(x * scale) y = int(y * scale) win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, x, y, 0, 0) time.sleep(0.05) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x, y, 0, 0) time.sleep(0.1) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0) time.sleep(0.1)