mirror of
https://github.com/Sneed-Group/RobloxPotatoes
synced 2025-01-09 17:33:37 +00:00
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
import tensorflow as tf
|
|
import tensorflow_hub as hub
|
|
import numpy as np
|
|
import pyautogui
|
|
import win32api, win32con, win32gui
|
|
import cv2
|
|
import math
|
|
import time
|
|
|
|
dirname = os.path.dirname(__file__)
|
|
detector = tf.saved_model.load(dirname)
|
|
size_scale = 3
|
|
|
|
while True:
|
|
# Get rect of Window
|
|
hwnd = win32gui.FindWindow(None, 'Roblox')
|
|
#hwnd = win32gui.FindWindow("UnrealWindow", None) # Fortnite
|
|
rect = win32gui.GetWindowRect(hwnd)
|
|
region = rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1]
|
|
|
|
# Get image of screen
|
|
ori_img = np.array(pyautogui.screenshot(region=region))
|
|
ori_img = cv2.resize(ori_img, (ori_img.shape[1] // size_scale, ori_img.shape[0] // size_scale))
|
|
image = np.expand_dims(ori_img, 0)
|
|
img_w, img_h = image.shape[2], image.shape[1]
|
|
|
|
# Detection
|
|
result = detector(image)
|
|
result = {key:value.numpy() for key,value in result.items()}
|
|
boxes = result['detection_boxes'][0]
|
|
scores = result['detection_scores'][0]
|
|
classes = result['detection_classes'][0]
|
|
|
|
# Check every detected object
|
|
detected_boxes = []
|
|
for i, box in enumerate(boxes):
|
|
# Choose only person(class:1)
|
|
if classes[i] == 1 and scores[i] >= 0.5:
|
|
ymin, xmin, ymax, xmax = tuple(box)
|
|
if ymin > 0.5 and ymax > 0.8: # CS:Go
|
|
#if int(xmin * img_w * 3) < 450: # Fortnite
|
|
continue
|
|
left, right, top, bottom = int(xmin * img_w), int(xmax * img_w), int(ymin * img_h), int(ymax * img_h)
|
|
detected_boxes.append((left, right, top, bottom))
|
|
#cv2.rectangle(ori_img, (left, top), (right, bottom), (255, 255, 0), 2)
|
|
|
|
print("Detected:", len(detected_boxes))
|
|
|
|
# Check Closest
|
|
if len(detected_boxes) >= 1:
|
|
min = 99999
|
|
at = 0
|
|
centers = []
|
|
for i, box in enumerate(detected_boxes):
|
|
x1, x2, y1, y2 = box
|
|
c_x = ((x2 - x1) / 2) + x1
|
|
c_y = ((y2 - y1) / 2) + y1
|
|
centers.append((c_x, c_y))
|
|
dist = math.sqrt(math.pow(img_w/2 - c_x, 2) + math.pow(img_h/2 - c_y, 2))
|
|
if dist < min:
|
|
min = dist
|
|
at = i
|
|
|
|
# Pixel difference between crosshair(center) and the closest object
|
|
x = centers[at][0] - img_w/2
|
|
y = centers[at][1] - img_h/2 - (detected_boxes[at][3] - detected_boxes[at][2]) * 0.45
|
|
|
|
# Move mouse and shoot
|
|
scale = 1.7 * size_scale
|
|
x = int(x * scale)
|
|
y = int(y * scale)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, x, y, 0, 0)
|
|
time.sleep(0.05)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x, y, 0, 0)
|
|
time.sleep(0.1)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0)
|
|
|
|
#ori_img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB)
|
|
#cv2.imshow("ori_img", ori_img)
|
|
#cv2.waitKey(1)
|
|
|
|
time.sleep(0.1)
|