agsamantha/node_modules/@langchain/community/dist/embeddings/gradient_ai.cjs

104 lines
3.9 KiB
JavaScript
Raw Permalink Normal View History

2024-10-02 15:15:21 -05:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.GradientEmbeddings = void 0;
const nodejs_sdk_1 = require("@gradientai/nodejs-sdk");
const env_1 = require("@langchain/core/utils/env");
const embeddings_1 = require("@langchain/core/embeddings");
const chunk_array_1 = require("@langchain/core/utils/chunk_array");
/**
* Class for generating embeddings using the Gradient AI's API. Extends the
* Embeddings class and implements GradientEmbeddingsParams and
*/
class GradientEmbeddings extends embeddings_1.Embeddings {
constructor(fields) {
super(fields);
Object.defineProperty(this, "gradientAccessKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "workspaceId", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "batchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 128
});
// eslint-disable-next-line @typescript-eslint/no-explicit-any
Object.defineProperty(this, "model", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.gradientAccessKey =
fields?.gradientAccessKey ??
(0, env_1.getEnvironmentVariable)("GRADIENT_ACCESS_TOKEN");
this.workspaceId =
fields?.workspaceId ?? (0, env_1.getEnvironmentVariable)("GRADIENT_WORKSPACE_ID");
if (!this.gradientAccessKey) {
throw new Error("Missing Gradient AI Access Token");
}
if (!this.workspaceId) {
throw new Error("Missing Gradient AI Workspace ID");
}
}
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the Gradient API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
async embedDocuments(texts) {
await this.setModel();
const mappedTexts = texts.map((text) => ({ input: text }));
const batches = (0, chunk_array_1.chunkArray)(mappedTexts, this.batchSize);
const batchRequests = batches.map((batch) => this.caller.call(async () => this.model.generateEmbeddings({
inputs: batch,
})));
const batchResponses = await Promise.all(batchRequests);
const embeddings = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batch = batches[i];
const { embeddings: batchResponse } = batchResponses[i];
for (let j = 0; j < batch.length; j += 1) {
embeddings.push(batchResponse[j].embedding);
}
}
return embeddings;
}
/**
* Method to generate an embedding for a single document. Calls the
* embedDocuments method with the document as the input.
* @param text Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the document.
*/
async embedQuery(text) {
const data = await this.embedDocuments([text]);
return data[0];
}
/**
* Method to set the model to use for generating embeddings.
* @sets the class' `model` value to that of the retrieved Embeddings Model.
*/
async setModel() {
if (this.model)
return;
const gradient = new nodejs_sdk_1.Gradient({
accessToken: this.gradientAccessKey,
workspaceId: this.workspaceId,
});
this.model = await gradient.getEmbeddingsModel({
slug: "bge-large",
});
}
}
exports.GradientEmbeddings = GradientEmbeddings;