278 lines
11 KiB
JavaScript
278 lines
11 KiB
JavaScript
|
import { OpenAI as OpenAIClient } from "openai";
|
||
|
import { getEnvironmentVariable } from "@langchain/core/utils/env";
|
||
|
import { Embeddings } from "@langchain/core/embeddings";
|
||
|
import { chunkArray } from "@langchain/core/utils/chunk_array";
|
||
|
import { getEndpoint } from "./utils/azure.js";
|
||
|
import { wrapOpenAIClientError } from "./utils/openai.js";
|
||
|
/**
|
||
|
* Class for generating embeddings using the OpenAI API. Extends the
|
||
|
* Embeddings class and implements OpenAIEmbeddingsParams and
|
||
|
* AzureOpenAIInput.
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* // Embed a query using OpenAIEmbeddings to generate embeddings for a given text
|
||
|
* const model = new OpenAIEmbeddings();
|
||
|
* const res = await model.embedQuery(
|
||
|
* "What would be a good company name for a company that makes colorful socks?",
|
||
|
* );
|
||
|
* console.log({ res });
|
||
|
*
|
||
|
* ```
|
||
|
*/
|
||
|
export class OpenAIEmbeddings extends Embeddings {
|
||
|
constructor(fields, configuration) {
|
||
|
const fieldsWithDefaults = { maxConcurrency: 2, ...fields };
|
||
|
super(fieldsWithDefaults);
|
||
|
Object.defineProperty(this, "modelName", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "text-embedding-ada-002"
|
||
|
});
|
||
|
Object.defineProperty(this, "model", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "text-embedding-ada-002"
|
||
|
});
|
||
|
Object.defineProperty(this, "batchSize", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: 512
|
||
|
});
|
||
|
// TODO: Update to `false` on next minor release (see: https://github.com/langchain-ai/langchainjs/pull/3612)
|
||
|
Object.defineProperty(this, "stripNewLines", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: true
|
||
|
});
|
||
|
/**
|
||
|
* The number of dimensions the resulting output embeddings should have.
|
||
|
* Only supported in `text-embedding-3` and later models.
|
||
|
*/
|
||
|
Object.defineProperty(this, "dimensions", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "timeout", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureOpenAIApiVersion", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureOpenAIApiKey", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureADTokenProvider", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureOpenAIApiInstanceName", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureOpenAIApiDeploymentName", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "azureOpenAIBasePath", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "organization", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "client", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "clientConfig", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
let apiKey = fieldsWithDefaults?.apiKey ??
|
||
|
fieldsWithDefaults?.openAIApiKey ??
|
||
|
getEnvironmentVariable("OPENAI_API_KEY");
|
||
|
const azureApiKey = fieldsWithDefaults?.azureOpenAIApiKey ??
|
||
|
getEnvironmentVariable("AZURE_OPENAI_API_KEY");
|
||
|
this.azureADTokenProvider = fields?.azureADTokenProvider ?? undefined;
|
||
|
if (!azureApiKey && !apiKey && !this.azureADTokenProvider) {
|
||
|
throw new Error("OpenAI or Azure OpenAI API key or Token Provider not found");
|
||
|
}
|
||
|
const azureApiInstanceName = fieldsWithDefaults?.azureOpenAIApiInstanceName ??
|
||
|
getEnvironmentVariable("AZURE_OPENAI_API_INSTANCE_NAME");
|
||
|
const azureApiDeploymentName = (fieldsWithDefaults?.azureOpenAIApiEmbeddingsDeploymentName ||
|
||
|
fieldsWithDefaults?.azureOpenAIApiDeploymentName) ??
|
||
|
(getEnvironmentVariable("AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME") ||
|
||
|
getEnvironmentVariable("AZURE_OPENAI_API_DEPLOYMENT_NAME"));
|
||
|
const azureApiVersion = fieldsWithDefaults?.azureOpenAIApiVersion ??
|
||
|
getEnvironmentVariable("AZURE_OPENAI_API_VERSION");
|
||
|
this.azureOpenAIBasePath =
|
||
|
fieldsWithDefaults?.azureOpenAIBasePath ??
|
||
|
getEnvironmentVariable("AZURE_OPENAI_BASE_PATH");
|
||
|
this.organization =
|
||
|
fieldsWithDefaults?.configuration?.organization ??
|
||
|
getEnvironmentVariable("OPENAI_ORGANIZATION");
|
||
|
this.modelName =
|
||
|
fieldsWithDefaults?.model ?? fieldsWithDefaults?.modelName ?? this.model;
|
||
|
this.model = this.modelName;
|
||
|
this.batchSize =
|
||
|
fieldsWithDefaults?.batchSize ?? (azureApiKey ? 1 : this.batchSize);
|
||
|
this.stripNewLines =
|
||
|
fieldsWithDefaults?.stripNewLines ?? this.stripNewLines;
|
||
|
this.timeout = fieldsWithDefaults?.timeout;
|
||
|
this.dimensions = fieldsWithDefaults?.dimensions;
|
||
|
this.azureOpenAIApiVersion = azureApiVersion;
|
||
|
this.azureOpenAIApiKey = azureApiKey;
|
||
|
this.azureOpenAIApiInstanceName = azureApiInstanceName;
|
||
|
this.azureOpenAIApiDeploymentName = azureApiDeploymentName;
|
||
|
if (this.azureOpenAIApiKey || this.azureADTokenProvider) {
|
||
|
if (!this.azureOpenAIApiInstanceName && !this.azureOpenAIBasePath) {
|
||
|
throw new Error("Azure OpenAI API instance name not found");
|
||
|
}
|
||
|
if (!this.azureOpenAIApiDeploymentName) {
|
||
|
throw new Error("Azure OpenAI API deployment name not found");
|
||
|
}
|
||
|
if (!this.azureOpenAIApiVersion) {
|
||
|
throw new Error("Azure OpenAI API version not found");
|
||
|
}
|
||
|
apiKey = apiKey ?? "";
|
||
|
}
|
||
|
this.clientConfig = {
|
||
|
apiKey,
|
||
|
organization: this.organization,
|
||
|
baseURL: configuration?.basePath,
|
||
|
dangerouslyAllowBrowser: true,
|
||
|
defaultHeaders: configuration?.baseOptions?.headers,
|
||
|
defaultQuery: configuration?.baseOptions?.params,
|
||
|
...configuration,
|
||
|
...fields?.configuration,
|
||
|
};
|
||
|
}
|
||
|
/**
|
||
|
* Method to generate embeddings for an array of documents. Splits the
|
||
|
* documents into batches and makes requests to the OpenAI API to generate
|
||
|
* embeddings.
|
||
|
* @param texts Array of documents to generate embeddings for.
|
||
|
* @returns Promise that resolves to a 2D array of embeddings for each document.
|
||
|
*/
|
||
|
async embedDocuments(texts) {
|
||
|
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
|
||
|
const batchRequests = batches.map((batch) => {
|
||
|
const params = {
|
||
|
model: this.model,
|
||
|
input: batch,
|
||
|
};
|
||
|
if (this.dimensions) {
|
||
|
params.dimensions = this.dimensions;
|
||
|
}
|
||
|
return this.embeddingWithRetry(params);
|
||
|
});
|
||
|
const batchResponses = await Promise.all(batchRequests);
|
||
|
const embeddings = [];
|
||
|
for (let i = 0; i < batchResponses.length; i += 1) {
|
||
|
const batch = batches[i];
|
||
|
const { data: batchResponse } = batchResponses[i];
|
||
|
for (let j = 0; j < batch.length; j += 1) {
|
||
|
embeddings.push(batchResponse[j].embedding);
|
||
|
}
|
||
|
}
|
||
|
return embeddings;
|
||
|
}
|
||
|
/**
|
||
|
* Method to generate an embedding for a single document. Calls the
|
||
|
* embeddingWithRetry method with the document as the input.
|
||
|
* @param text Document to generate an embedding for.
|
||
|
* @returns Promise that resolves to an embedding for the document.
|
||
|
*/
|
||
|
async embedQuery(text) {
|
||
|
const params = {
|
||
|
model: this.model,
|
||
|
input: this.stripNewLines ? text.replace(/\n/g, " ") : text,
|
||
|
};
|
||
|
if (this.dimensions) {
|
||
|
params.dimensions = this.dimensions;
|
||
|
}
|
||
|
const { data } = await this.embeddingWithRetry(params);
|
||
|
return data[0].embedding;
|
||
|
}
|
||
|
/**
|
||
|
* Private method to make a request to the OpenAI API to generate
|
||
|
* embeddings. Handles the retry logic and returns the response from the
|
||
|
* API.
|
||
|
* @param request Request to send to the OpenAI API.
|
||
|
* @returns Promise that resolves to the response from the API.
|
||
|
*/
|
||
|
async embeddingWithRetry(request) {
|
||
|
if (!this.client) {
|
||
|
const openAIEndpointConfig = {
|
||
|
azureOpenAIApiDeploymentName: this.azureOpenAIApiDeploymentName,
|
||
|
azureOpenAIApiInstanceName: this.azureOpenAIApiInstanceName,
|
||
|
azureOpenAIApiKey: this.azureOpenAIApiKey,
|
||
|
azureOpenAIBasePath: this.azureOpenAIBasePath,
|
||
|
baseURL: this.clientConfig.baseURL,
|
||
|
};
|
||
|
const endpoint = getEndpoint(openAIEndpointConfig);
|
||
|
const params = {
|
||
|
...this.clientConfig,
|
||
|
baseURL: endpoint,
|
||
|
timeout: this.timeout,
|
||
|
maxRetries: 0,
|
||
|
};
|
||
|
if (!params.baseURL) {
|
||
|
delete params.baseURL;
|
||
|
}
|
||
|
this.client = new OpenAIClient(params);
|
||
|
}
|
||
|
const requestOptions = {};
|
||
|
if (this.azureOpenAIApiKey) {
|
||
|
requestOptions.headers = {
|
||
|
"api-key": this.azureOpenAIApiKey,
|
||
|
...requestOptions.headers,
|
||
|
};
|
||
|
requestOptions.query = {
|
||
|
"api-version": this.azureOpenAIApiVersion,
|
||
|
...requestOptions.query,
|
||
|
};
|
||
|
}
|
||
|
return this.caller.call(async () => {
|
||
|
try {
|
||
|
const res = await this.client.embeddings.create(request, requestOptions);
|
||
|
return res;
|
||
|
}
|
||
|
catch (e) {
|
||
|
const error = wrapOpenAIClientError(e);
|
||
|
throw error;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
}
|