agsamantha/node_modules/langchain/dist/agents/openai_functions/index.d.ts

154 lines
6.3 KiB
TypeScript
Raw Permalink Normal View History

2024-10-02 20:15:21 +00:00
import type { BaseLanguageModelInterface, BaseFunctionCallOptions } from "@langchain/core/language_models/base";
import type { StructuredToolInterface } from "@langchain/core/tools";
import type { BaseChatModel } from "@langchain/core/language_models/chat_models";
import type { AgentAction, AgentFinish, AgentStep } from "@langchain/core/agents";
import { BaseMessage, SystemMessage } from "@langchain/core/messages";
import { ChainValues } from "@langchain/core/utils/types";
import { ChatPromptTemplate, BasePromptTemplate } from "@langchain/core/prompts";
import { CallbackManager } from "@langchain/core/callbacks/manager";
import { Agent, AgentArgs, AgentRunnableSequence } from "../agent.js";
import { AgentInput } from "../types.js";
import { OpenAIFunctionsAgentOutputParser } from "../openai/output_parser.js";
export declare function _formatIntermediateSteps(intermediateSteps: AgentStep[]): BaseMessage[];
/**
* Interface for the input data required to create an OpenAIAgent.
*/
export interface OpenAIAgentInput extends AgentInput {
tools: StructuredToolInterface[];
}
/**
* Interface for the arguments required to create a prompt for an
* OpenAIAgent.
*/
export interface OpenAIAgentCreatePromptArgs {
prefix?: string;
systemMessage?: SystemMessage;
}
/**
* Class representing an agent for the OpenAI chat model in LangChain. It
* extends the Agent class and provides additional functionality specific
* to the OpenAIAgent type.
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createOpenAIFunctionsAgent.html | createOpenAIFunctionsAgent method instead}.
*/
export declare class OpenAIAgent extends Agent {
static lc_name(): string;
lc_namespace: string[];
_agentType(): "openai-functions";
observationPrefix(): string;
llmPrefix(): string;
_stop(): string[];
tools: StructuredToolInterface[];
outputParser: OpenAIFunctionsAgentOutputParser;
constructor(input: Omit<OpenAIAgentInput, "outputParser">);
/**
* Creates a prompt for the OpenAIAgent using the provided tools and
* fields.
* @param _tools The tools to be used in the prompt.
* @param fields Optional fields for creating the prompt.
* @returns A BasePromptTemplate object representing the created prompt.
*/
static createPrompt(_tools: StructuredToolInterface[], fields?: OpenAIAgentCreatePromptArgs): BasePromptTemplate;
/**
* Creates an OpenAIAgent from a BaseLanguageModel and a list of tools.
* @param llm The BaseLanguageModel to use.
* @param tools The tools to be used by the agent.
* @param args Optional arguments for creating the agent.
* @returns An instance of OpenAIAgent.
*/
static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: StructuredToolInterface[], args?: OpenAIAgentCreatePromptArgs & Pick<AgentArgs, "callbacks">): OpenAIAgent;
/**
* Constructs a scratch pad from a list of agent steps.
* @param steps The steps to include in the scratch pad.
* @returns A string or a list of BaseMessages representing the constructed scratch pad.
*/
constructScratchPad(steps: AgentStep[]): Promise<string | BaseMessage[]>;
/**
* Plans the next action or finish state of the agent based on the
* provided steps, inputs, and optional callback manager.
* @param steps The steps to consider in planning.
* @param inputs The inputs to consider in planning.
* @param callbackManager Optional CallbackManager to use in planning.
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
*/
plan(steps: Array<AgentStep>, inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction | AgentFinish>;
}
/**
* Params used by the createOpenAIFunctionsAgent function.
*/
export type CreateOpenAIFunctionsAgentParams = {
/**
* LLM to use as the agent. Should work with OpenAI function calling,
* so must either be an OpenAI model that supports that or a wrapper of
* a different model that adds in equivalent support.
*/
llm: BaseChatModel<BaseFunctionCallOptions>;
/** Tools this agent has access to. */
tools: StructuredToolInterface[];
/** The prompt to use, must have an input key for `agent_scratchpad`. */
prompt: ChatPromptTemplate;
/**
* Whether to invoke the underlying model in streaming mode,
* allowing streaming of intermediate steps. Defaults to true.
*/
streamRunnable?: boolean;
};
/**
* Create an agent that uses OpenAI-style function calling.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createOpenAIFunctionsAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { ChatPromptTemplate } from "@langchain/core/prompts";
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
*
* import { ChatOpenAI } from "@langchain/openai";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/openai-functions-agent
* const prompt = await pull<ChatPromptTemplate>(
* "hwchase17/openai-functions-agent"
* );
*
* const llm = new ChatOpenAI({
* temperature: 0,
* });
*
* const agent = await createOpenAIFunctionsAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* chat_history: [
* new HumanMessage("hi! my name is cob"),
* new AIMessage("Hello Cob! How can I assist you today?"),
* ],
* });
* ```
*/
export declare function createOpenAIFunctionsAgent({ llm, tools, prompt, streamRunnable, }: CreateOpenAIFunctionsAgentParams): Promise<AgentRunnableSequence<{
steps: AgentStep[];
}, AgentAction | AgentFinish>>;