agsamantha/node_modules/langchain/dist/agents/xml/index.js

181 lines
6.3 KiB
JavaScript
Raw Permalink Normal View History

2024-10-02 15:15:21 -05:00
import { RunnablePassthrough } from "@langchain/core/runnables";
import { AIMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, } from "@langchain/core/prompts";
import { LLMChain } from "../../chains/llm_chain.js";
import { AgentRunnableSequence, BaseSingleActionAgent, } from "../agent.js";
import { AGENT_INSTRUCTIONS } from "./prompt.js";
import { XMLAgentOutputParser } from "./output_parser.js";
import { renderTextDescription } from "../../tools/render.js";
import { formatXml } from "../format_scratchpad/xml.js";
/**
* Class that represents an agent that uses XML tags.
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createXmlAgent.html | createXmlAgent method instead}.
*/
export class XMLAgent extends BaseSingleActionAgent {
static lc_name() {
return "XMLAgent";
}
_agentType() {
return "xml";
}
constructor(fields) {
super(fields);
Object.defineProperty(this, "lc_namespace", {
enumerable: true,
configurable: true,
writable: true,
value: ["langchain", "agents", "xml"]
});
Object.defineProperty(this, "tools", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "llmChain", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "outputParser", {
enumerable: true,
configurable: true,
writable: true,
value: new XMLAgentOutputParser()
});
this.tools = fields.tools;
this.llmChain = fields.llmChain;
}
get inputKeys() {
return ["input"];
}
static createPrompt() {
return ChatPromptTemplate.fromMessages([
HumanMessagePromptTemplate.fromTemplate(AGENT_INSTRUCTIONS),
AIMessagePromptTemplate.fromTemplate("{intermediate_steps}"),
]);
}
/**
* Plans the next action or finish state of the agent based on the
* provided steps, inputs, and optional callback manager.
* @param steps The steps to consider in planning.
* @param inputs The inputs to consider in planning.
* @param callbackManager Optional CallbackManager to use in planning.
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
*/
async plan(steps, inputs, callbackManager) {
let log = "";
for (const { action, observation } of steps) {
log += `<tool>${action.tool}</tool><tool_input>${action.toolInput}</tool_input><observation>${observation}</observation>`;
}
let tools = "";
for (const tool of this.tools) {
tools += `${tool.name}: ${tool.description}\n`;
}
const _inputs = {
intermediate_steps: log,
tools,
question: inputs.input,
stop: ["</tool_input>", "</final_answer>"],
};
const response = await this.llmChain.call(_inputs, callbackManager);
return this.outputParser.parse(response[this.llmChain.outputKey]);
}
/**
* Creates an XMLAgent from a BaseLanguageModel and a list of tools.
* @param llm The BaseLanguageModel to use.
* @param tools The tools to be used by the agent.
* @param args Optional arguments for creating the agent.
* @returns An instance of XMLAgent.
*/
static fromLLMAndTools(llm, tools, args) {
const prompt = XMLAgent.createPrompt();
const chain = new LLMChain({
prompt,
llm,
callbacks: args?.callbacks,
});
return new XMLAgent({
llmChain: chain,
tools,
});
}
}
/**
* Create an agent that uses XML to format its logic.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createXmlAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { PromptTemplate } from "@langchain/core/prompts";
*
* import { ChatAnthropic } from "@langchain/anthropic";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/xml-agent-convo
* const prompt = await pull<PromptTemplate>("hwchase17/xml-agent-convo");
*
* const llm = new ChatAnthropic({
* temperature: 0,
* });
*
* const agent = await createXmlAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* // Notice that chat_history is a string, since this prompt is aimed at LLMs, not chat models
* chat_history: "Human: Hi! My name is Cob\nAI: Hello Cob! Nice to meet you",
* });
* ```
*/
export async function createXmlAgent({ llm, tools, prompt, streamRunnable, }) {
const missingVariables = ["tools", "agent_scratchpad"].filter((v) => !prompt.inputVariables.includes(v));
if (missingVariables.length > 0) {
throw new Error(`Provided prompt is missing required input variables: ${JSON.stringify(missingVariables)}`);
}
const partialedPrompt = await prompt.partial({
tools: renderTextDescription(tools),
});
// TODO: Add .bind to core runnable interface.
const llmWithStop = llm.bind({
stop: ["</tool_input>", "</final_answer>"],
});
const agent = AgentRunnableSequence.fromRunnables([
RunnablePassthrough.assign({
agent_scratchpad: (input) => formatXml(input.steps),
}),
partialedPrompt,
llmWithStop,
new XMLAgentOutputParser(),
], {
name: "XMLAgent",
streamRunnable,
singleAction: true,
});
return agent;
}