agsamantha/node_modules/langchain/dist/embeddings/cache_backed.cjs

144 lines
5.4 KiB
JavaScript
Raw Permalink Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.CacheBackedEmbeddings = void 0;
const hash_1 = require("@langchain/core/utils/hash");
const embeddings_1 = require("@langchain/core/embeddings");
const encoder_backed_js_1 = require("../storage/encoder_backed.cjs");
/**
* Interface for caching results from embedding models.
*
* The interface allows works with any store that implements
* the abstract store interface accepting keys of type str and values of list of
* floats.
*
* If need be, the interface can be extended to accept other implementations
* of the value serializer and deserializer, as well as the key encoder.
* @example
* ```typescript
* const underlyingEmbeddings = new OpenAIEmbeddings();
*
* const cacheBackedEmbeddings = CacheBackedEmbeddings.fromBytesStore(
* underlyingEmbeddings,
* new ConvexKVStore({ ctx }),
* {
* namespace: underlyingEmbeddings.modelName,
* },
* );
*
* const loader = new TextLoader("./state_of_the_union.txt");
* const rawDocuments = await loader.load();
* const splitter = new RecursiveCharacterTextSplitter({
* chunkSize: 1000,
* chunkOverlap: 0,
* });
* const documents = await splitter.splitDocuments(rawDocuments);
*
* let time = Date.now();
* const vectorstore = await ConvexVectorStore.fromDocuments(
* documents,
* cacheBackedEmbeddings,
* { ctx },
* );
* console.log(`Initial creation time: ${Date.now() - time}ms`);
*
* time = Date.now();
* const vectorstore2 = await ConvexVectorStore.fromDocuments(
* documents,
* cacheBackedEmbeddings,
* { ctx },
* );
* console.log(`Cached creation time: ${Date.now() - time}ms`);
*
* ```
*/
class CacheBackedEmbeddings extends embeddings_1.Embeddings {
constructor(fields) {
super(fields);
Object.defineProperty(this, "underlyingEmbeddings", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "documentEmbeddingStore", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.underlyingEmbeddings = fields.underlyingEmbeddings;
this.documentEmbeddingStore = fields.documentEmbeddingStore;
}
/**
* Embed query text.
*
* This method does not support caching at the moment.
*
* Support for caching queries is easy to implement, but might make
* sense to hold off to see the most common patterns.
*
* If the cache has an eviction policy, we may need to be a bit more careful
* about sharing the cache between documents and queries. Generally,
* one is OK evicting query caches, but document caches should be kept.
*
* @param document The text to embed.
* @returns The embedding for the given text.
*/
async embedQuery(document) {
return this.underlyingEmbeddings.embedQuery(document);
}
/**
* Embed a list of texts.
*
* The method first checks the cache for the embeddings.
* If the embeddings are not found, the method uses the underlying embedder
* to embed the documents and stores the results in the cache.
*
* @param documents
* @returns A list of embeddings for the given texts.
*/
async embedDocuments(documents) {
const vectors = await this.documentEmbeddingStore.mget(documents);
const missingIndicies = [];
const missingDocuments = [];
for (let i = 0; i < vectors.length; i += 1) {
if (vectors[i] === undefined) {
missingIndicies.push(i);
missingDocuments.push(documents[i]);
}
}
if (missingDocuments.length) {
const missingVectors = await this.underlyingEmbeddings.embedDocuments(missingDocuments);
const keyValuePairs = missingDocuments.map((document, i) => [document, missingVectors[i]]);
await this.documentEmbeddingStore.mset(keyValuePairs);
for (let i = 0; i < missingIndicies.length; i += 1) {
vectors[missingIndicies[i]] = missingVectors[i];
}
}
return vectors;
}
/**
* Create a new CacheBackedEmbeddings instance from another embeddings instance
* and a storage instance.
* @param underlyingEmbeddings Embeddings used to populate the cache for new documents.
* @param documentEmbeddingStore Stores raw document embedding values. Keys are hashes of the document content.
* @param options.namespace Optional namespace for store keys.
* @returns A new CacheBackedEmbeddings instance.
*/
static fromBytesStore(underlyingEmbeddings, documentEmbeddingStore, options) {
const encoder = new TextEncoder();
const decoder = new TextDecoder();
const encoderBackedStore = new encoder_backed_js_1.EncoderBackedStore({
store: documentEmbeddingStore,
keyEncoder: (key) => (options?.namespace ?? "") + (0, hash_1.insecureHash)(key),
valueSerializer: (value) => encoder.encode(JSON.stringify(value)),
valueDeserializer: (serializedValue) => JSON.parse(decoder.decode(serializedValue)),
});
return new this({
underlyingEmbeddings,
documentEmbeddingStore: encoderBackedStore,
});
}
}
exports.CacheBackedEmbeddings = CacheBackedEmbeddings;