agsamantha/node_modules/langchain/dist/memory/summary_buffer.d.ts

85 lines
3.8 KiB
TypeScript
Raw Permalink Normal View History

2024-10-02 15:15:21 -05:00
import { InputValues, MemoryVariables, OutputValues } from "@langchain/core/memory";
import { BaseConversationSummaryMemory, BaseConversationSummaryMemoryInput } from "./summary.js";
/**
* Interface for the input parameters of the
* ConversationSummaryBufferMemory class.
*/
export interface ConversationSummaryBufferMemoryInput extends BaseConversationSummaryMemoryInput {
maxTokenLimit?: number;
}
/**
* Class that extends BaseConversationSummaryMemory and implements
* ConversationSummaryBufferMemoryInput. It manages the conversation
* history in a LangChain application by maintaining a buffer of chat
* messages and providing methods to load, save, prune, and clear the
* memory.
* @example
* ```typescript
* // Initialize the memory with a specific model and token limit
* const memory = new ConversationSummaryBufferMemory({
* llm: new ChatOpenAI({ modelName: "gpt-3.5-turbo-instruct", temperature: 0 }),
* maxTokenLimit: 10,
* });
*
* // Save conversation context to memory
* await memory.saveContext({ input: "hi" }, { output: "whats up" });
* await memory.saveContext({ input: "not much you" }, { output: "not much" });
*
* // Load the conversation history from memory
* const history = await memory.loadMemoryVariables({});
* console.log({ history });
*
* // Create a chat prompt using the conversation history
* const chatPrompt = ChatPromptTemplate.fromMessages([
* SystemMessagePromptTemplate.fromTemplate(
* "The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.",
* ),
* new MessagesPlaceholder("history"),
* HumanMessagePromptTemplate.fromTemplate("{input}"),
* ]);
*
* // Initialize the conversation chain with the model, memory, and prompt
* const chain = new ConversationChain({
* llm: new ChatOpenAI({ temperature: 0.9, verbose: true }),
* memory: memory,
* prompt: chatPrompt,
* });
* ```
*/
export declare class ConversationSummaryBufferMemory extends BaseConversationSummaryMemory implements ConversationSummaryBufferMemoryInput {
movingSummaryBuffer: string;
maxTokenLimit: number;
constructor(fields: ConversationSummaryBufferMemoryInput);
get memoryKeys(): string[];
/**
* Method that loads the chat messages from the memory and returns them as
* a string or as a list of messages, depending on the returnMessages
* property.
* @param _ InputValues object, not used in this method.
* @returns Promise that resolves with MemoryVariables object containing the loaded chat messages.
*/
loadMemoryVariables(_?: InputValues): Promise<MemoryVariables>;
/**
* Method that saves the context of the conversation, including the input
* and output values, and prunes the memory if it exceeds the maximum
* token limit.
* @param inputValues InputValues object containing the input values of the conversation.
* @param outputValues OutputValues object containing the output values of the conversation.
* @returns Promise that resolves when the context is saved and the memory is pruned.
*/
saveContext(inputValues: InputValues, outputValues: OutputValues): Promise<void>;
/**
* Method that prunes the memory if the total number of tokens in the
* buffer exceeds the maxTokenLimit. It removes messages from the
* beginning of the buffer until the total number of tokens is within the
* limit.
* @returns Promise that resolves when the memory is pruned.
*/
prune(): Promise<void>;
/**
* Method that clears the memory and resets the movingSummaryBuffer.
* @returns Promise that resolves when the memory is cleared.
*/
clear(): Promise<void>;
}