agsamantha/node_modules/langchain/dist/retrievers/self_query/index.d.ts

75 lines
3.4 KiB
TypeScript
Raw Permalink Normal View History

2024-10-02 20:15:21 +00:00
import { RunnableInterface } from "@langchain/core/runnables";
import { BaseRetriever, type BaseRetrieverInput } from "@langchain/core/retrievers";
import { Document } from "@langchain/core/documents";
import { VectorStore } from "@langchain/core/vectorstores";
import { BaseTranslator, BasicTranslator, FunctionalTranslator, StructuredQuery } from "@langchain/core/structured_query";
import { CallbackManagerForRetrieverRun } from "@langchain/core/callbacks/manager";
import { QueryConstructorRunnableOptions } from "../../chains/query_constructor/index.js";
export { BaseTranslator, BasicTranslator, FunctionalTranslator };
/**
* Interface for the arguments required to create a SelfQueryRetriever
* instance. It extends the BaseRetrieverInput interface.
*/
export interface SelfQueryRetrieverArgs<T extends VectorStore> extends BaseRetrieverInput {
vectorStore: T;
structuredQueryTranslator: BaseTranslator<T>;
queryConstructor: RunnableInterface<{
query: string;
}, StructuredQuery>;
verbose?: boolean;
useOriginalQuery?: boolean;
searchParams?: {
k?: number;
filter?: T["FilterType"];
mergeFiltersOperator?: "or" | "and" | "replace";
forceDefaultFilter?: boolean;
};
}
/**
* Class for question answering over an index. It retrieves relevant
* documents based on a query. It extends the BaseRetriever class and
* implements the SelfQueryRetrieverArgs interface.
* @example
* ```typescript
* const selfQueryRetriever = SelfQueryRetriever.fromLLM({
* llm: new ChatOpenAI(),
* vectorStore: await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings()),
* documentContents: "Brief summary of a movie",
* attributeInfo: attributeInfo,
* structuredQueryTranslator: new FunctionalTranslator(),
* });
* const relevantDocuments = await selfQueryRetriever.getRelevantDocuments(
* "Which movies are directed by Greta Gerwig?",
* );
* ```
*/
export declare class SelfQueryRetriever<T extends VectorStore> extends BaseRetriever implements SelfQueryRetrieverArgs<T> {
static lc_name(): string;
get lc_namespace(): string[];
vectorStore: T;
queryConstructor: RunnableInterface<{
query: string;
}, StructuredQuery>;
verbose?: boolean;
structuredQueryTranslator: BaseTranslator<T>;
useOriginalQuery: boolean;
searchParams?: {
k?: number;
filter?: T["FilterType"];
mergeFiltersOperator?: "or" | "and" | "replace";
forceDefaultFilter?: boolean;
};
constructor(options: SelfQueryRetrieverArgs<T>);
_getRelevantDocuments(query: string, runManager?: CallbackManagerForRetrieverRun): Promise<Document<Record<string, unknown>>[]>;
/**
* Static method to create a new SelfQueryRetriever instance from a
* BaseLanguageModel and a VectorStore. It first loads a query constructor
* chain using the loadQueryConstructorChain function, then creates a new
* SelfQueryRetriever instance with the loaded chain and the provided
* options.
* @param options The options used to create the SelfQueryRetriever instance. It includes the QueryConstructorChainOptions and all the SelfQueryRetrieverArgs except 'llmChain'.
* @returns A new instance of SelfQueryRetriever.
*/
static fromLLM<T extends VectorStore>(options: QueryConstructorRunnableOptions & Omit<SelfQueryRetrieverArgs<T>, "queryConstructor">): SelfQueryRetriever<T>;
}