agsamantha/node_modules/@langchain/community/dist/chat_models/llama_cpp.d.ts

73 lines
3 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { LlamaModel, LlamaContext, LlamaChatSession, type ConversationInteraction } from "node-llama-cpp";
import { SimpleChatModel, type BaseChatModelParams } from "@langchain/core/language_models/chat_models";
import type { BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { BaseMessage } from "@langchain/core/messages";
import { ChatGenerationChunk } from "@langchain/core/outputs";
import { LlamaBaseCppInputs } from "../utils/llama_cpp.js";
/**
* Note that the modelPath is the only required parameter. For testing you
* can set this in the environment variable `LLAMA_PATH`.
*/
export interface LlamaCppInputs extends LlamaBaseCppInputs, BaseChatModelParams {
}
export interface LlamaCppCallOptions extends BaseLanguageModelCallOptions {
/** The maximum number of tokens the response should contain. */
maxTokens?: number;
/** A function called when matching the provided token array */
onToken?: (tokens: number[]) => void;
}
/**
* To use this model you need to have the `node-llama-cpp` module installed.
* This can be installed using `npm install -S node-llama-cpp` and the minimum
* version supported in version 2.0.0.
* This also requires that have a locally built version of Llama2 installed.
* @example
* ```typescript
* // Initialize the ChatLlamaCpp model with the path to the model binary file.
* const model = new ChatLlamaCpp({
* modelPath: "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin",
* temperature: 0.5,
* });
*
* // Call the model with a message and await the response.
* const response = await model.invoke([
* new HumanMessage({ content: "My name is John." }),
* ]);
*
* // Log the response to the console.
* console.log({ response });
*
* ```
*/
export declare class ChatLlamaCpp extends SimpleChatModel<LlamaCppCallOptions> {
static inputs: LlamaCppInputs;
maxTokens?: number;
temperature?: number;
topK?: number;
topP?: number;
trimWhitespaceSuffix?: boolean;
_model: LlamaModel;
_context: LlamaContext;
_session: LlamaChatSession | null;
lc_serializable: boolean;
static lc_name(): string;
constructor(inputs: LlamaCppInputs);
_llmType(): string;
/** @ignore */
_combineLLMOutput(): {};
invocationParams(): {
maxTokens: number | undefined;
temperature: number | undefined;
topK: number | undefined;
topP: number | undefined;
trimWhitespaceSuffix: boolean | undefined;
};
/** @ignore */
_call(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): Promise<string>;
_streamResponseChunks(input: BaseMessage[], _options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<ChatGenerationChunk>;
protected _buildSession(messages: BaseMessage[]): string;
protected _convertMessagesToInteractions(messages: BaseMessage[]): ConversationInteraction[];
protected _buildPrompt(input: BaseMessage[]): string;
}