109 lines
4.2 KiB
JavaScript
109 lines
4.2 KiB
JavaScript
|
"use strict";
|
||
|
var __importDefault = (this && this.__importDefault) || function (mod) {
|
||
|
return (mod && mod.__esModule) ? mod : { "default": mod };
|
||
|
};
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.PremEmbeddings = void 0;
|
||
|
const env_1 = require("@langchain/core/utils/env");
|
||
|
const embeddings_1 = require("@langchain/core/embeddings");
|
||
|
const chunk_array_1 = require("@langchain/core/utils/chunk_array");
|
||
|
const prem_sdk_1 = __importDefault(require("@premai/prem-sdk"));
|
||
|
/**
|
||
|
* Class for generating embeddings using the Prem AI's API. Extends the
|
||
|
* Embeddings class and implements PremEmbeddingsParams and
|
||
|
*/
|
||
|
class PremEmbeddings extends embeddings_1.Embeddings {
|
||
|
constructor(fields) {
|
||
|
super(fields);
|
||
|
Object.defineProperty(this, "client", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "batchSize", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: 128
|
||
|
});
|
||
|
Object.defineProperty(this, "apiKey", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "project_id", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "model", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "encoding_format", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
const apiKey = fields?.apiKey || (0, env_1.getEnvironmentVariable)("PREM_API_KEY");
|
||
|
if (!apiKey) {
|
||
|
throw new Error(`Prem API key not found. Please set the PREM_API_KEY environment variable or provide the key into "apiKey"`);
|
||
|
}
|
||
|
const projectId = fields?.project_id ??
|
||
|
parseInt((0, env_1.getEnvironmentVariable)("PREM_PROJECT_ID") ?? "-1", 10);
|
||
|
if (!projectId || projectId === -1 || typeof projectId !== "number") {
|
||
|
throw new Error(`Prem project ID not found. Please set the PREM_PROJECT_ID environment variable or provide the key into "project_id"`);
|
||
|
}
|
||
|
this.client = new prem_sdk_1.default({
|
||
|
apiKey,
|
||
|
});
|
||
|
this.project_id = projectId;
|
||
|
this.model = fields.model ?? this.model;
|
||
|
this.encoding_format = fields.encoding_format ?? this.encoding_format;
|
||
|
}
|
||
|
/**
|
||
|
* Method to generate embeddings for an array of documents. Splits the
|
||
|
* documents into batches and makes requests to the Prem API to generate
|
||
|
* embeddings.
|
||
|
* @param texts Array of documents to generate embeddings for.
|
||
|
* @returns Promise that resolves to a 2D array of embeddings for each document.
|
||
|
*/
|
||
|
async embedDocuments(texts) {
|
||
|
const mappedTexts = texts.map((text) => text);
|
||
|
const batches = (0, chunk_array_1.chunkArray)(mappedTexts, this.batchSize);
|
||
|
const batchRequests = batches.map((batch) => this.caller.call(async () => this.client.embeddings.create({
|
||
|
input: batch,
|
||
|
model: this.model,
|
||
|
encoding_format: this.encoding_format,
|
||
|
project_id: this.project_id,
|
||
|
})));
|
||
|
const batchResponses = await Promise.all(batchRequests);
|
||
|
const embeddings = [];
|
||
|
for (let i = 0; i < batchResponses.length; i += 1) {
|
||
|
const batch = batches[i];
|
||
|
const { data: batchResponse } = batchResponses[i];
|
||
|
for (let j = 0; j < batch.length; j += 1) {
|
||
|
embeddings.push(batchResponse[j].embedding);
|
||
|
}
|
||
|
}
|
||
|
return embeddings;
|
||
|
}
|
||
|
/**
|
||
|
* Method to generate an embedding for a single document. Calls the
|
||
|
* embedDocuments method with the document as the input.
|
||
|
* @param text Document to generate an embedding for.
|
||
|
* @returns Promise that resolves to an embedding for the document.
|
||
|
*/
|
||
|
async embedQuery(text) {
|
||
|
const data = await this.embedDocuments([text]);
|
||
|
return data[0];
|
||
|
}
|
||
|
}
|
||
|
exports.PremEmbeddings = PremEmbeddings;
|