agsamantha/node_modules/@langchain/community/dist/llms/portkey.d.ts

58 lines
1.8 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { LLMOptions, Portkey as _Portkey } from "portkey-ai";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { GenerationChunk, LLMResult } from "@langchain/core/outputs";
import { BaseLLM } from "@langchain/core/language_models/llms";
interface PortkeyOptions {
apiKey?: string;
baseURL?: string;
mode?: string;
llms?: [LLMOptions] | null;
}
export declare class PortkeySession {
portkey: _Portkey;
constructor(options?: PortkeyOptions);
}
/**
* Get a session for the Portkey API. If one already exists with the same options,
* it will be returned. Otherwise, a new session will be created.
* @param options
* @returns
*/
export declare function getPortkeySession(options?: PortkeyOptions): PortkeySession;
/**
* @example
* ```typescript
* const model = new Portkey({
* mode: "single",
* llms: [
* {
* provider: "openai",
* virtual_key: "open-ai-key-1234",
* model: "gpt-3.5-turbo-instruct",
* max_tokens: 2000,
* },
* ],
* });
*
* // Stream the output of the model and process it
* const res = await model.stream(
* "Question: Write a story about a king\nAnswer:"
* );
* for await (const i of res) {
* process.stdout.write(i);
* }
* ```
*/
export declare class Portkey extends BaseLLM {
apiKey?: string;
baseURL?: string;
mode?: string;
llms?: [LLMOptions] | null;
session: PortkeySession;
constructor(init?: Partial<Portkey>);
_llmType(): string;
_generate(prompts: string[], options: this["ParsedCallOptions"], _?: CallbackManagerForLLMRun): Promise<LLMResult>;
_streamResponseChunks(input: string, options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<GenerationChunk>;
}
export {};