agsamantha/node_modules/@langchain/community/dist/vectorstores/qdrant.d.ts

116 lines
6.3 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { QdrantClient } from "@qdrant/js-client-rest";
import type { Schemas as QdrantSchemas } from "@qdrant/js-client-rest";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
/**
* @deprecated Install and import from @langchain/qdrant instead.
*
* Interface for the arguments that can be passed to the
* `QdrantVectorStore` constructor. It includes options for specifying a
* `QdrantClient` instance, the URL and API key for a Qdrant database, and
* the name and configuration for a collection.
*/
export interface QdrantLibArgs {
client?: QdrantClient;
url?: string;
apiKey?: string;
collectionName?: string;
collectionConfig?: QdrantSchemas["CreateCollection"];
customPayload?: Record<string, any>[];
contentPayloadKey?: string;
metadataPayloadKey?: string;
}
/** @deprecated Install and import from @langchain/qdrant instead. */
export type QdrantAddDocumentOptions = {
customPayload: Record<string, any>[];
};
/** @deprecated Install and import from @langchain/qdrant instead. */
export type QdrantFilter = QdrantSchemas["Filter"];
/** @deprecated Install and import from @langchain/qdrant instead. */
export type QdrantCondition = QdrantSchemas["FieldCondition"];
/**
* @deprecated Install and import from @langchain/qdrant instead.
*
* Class that extends the `VectorStore` base class to interact with a
* Qdrant database. It includes methods for adding documents and vectors
* to the Qdrant database, searching for similar vectors, and ensuring the
* existence of a collection in the database.
*/
export declare class QdrantVectorStore extends VectorStore {
FilterType: QdrantFilter;
get lc_secrets(): {
[key: string]: string;
};
client: QdrantClient;
collectionName: string;
collectionConfig?: QdrantSchemas["CreateCollection"];
contentPayloadKey: string;
metadataPayloadKey: string;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: QdrantLibArgs);
/**
* Method to add documents to the Qdrant database. It generates vectors
* from the documents using the `Embeddings` instance and then adds the
* vectors to the database.
* @param documents Array of `Document` instances to be added to the Qdrant database.
* @param documentOptions Optional `QdrantAddDocumentOptions` which has a list of JSON objects for extra querying
* @returns Promise that resolves when the documents have been added to the database.
*/
addDocuments(documents: Document[], documentOptions?: QdrantAddDocumentOptions): Promise<void>;
/**
* Method to add vectors to the Qdrant database. Each vector is associated
* with a document, which is stored as the payload for a point in the
* database.
* @param vectors Array of vectors to be added to the Qdrant database.
* @param documents Array of `Document` instances associated with the vectors.
* @param documentOptions Optional `QdrantAddDocumentOptions` which has a list of JSON objects for extra querying
* @returns Promise that resolves when the vectors have been added to the database.
*/
addVectors(vectors: number[][], documents: Document[], documentOptions?: QdrantAddDocumentOptions): Promise<void>;
/**
* Method to search for vectors in the Qdrant database that are similar to
* a given query vector. The search results include the score and payload
* (metadata and content) for each similar vector.
* @param query Query vector to search for similar vectors in the Qdrant database.
* @param k Optional number of similar vectors to return. If not specified, all similar vectors are returned.
* @param filter Optional filter to apply to the search results.
* @returns Promise that resolves with an array of tuples, where each tuple includes a `Document` instance and a score for a similar vector.
*/
similaritySearchVectorWithScore(query: number[], k?: number, filter?: this["FilterType"]): Promise<[Document, number][]>;
/**
* Method to ensure the existence of a collection in the Qdrant database.
* If the collection does not exist, it is created.
* @returns Promise that resolves when the existence of the collection has been ensured.
*/
ensureCollection(): Promise<void>;
/**
* Static method to create a `QdrantVectorStore` instance from texts. Each
* text is associated with metadata and converted to a `Document`
* instance, which is then added to the Qdrant database.
* @param texts Array of texts to be converted to `Document` instances and added to the Qdrant database.
* @param metadatas Array or single object of metadata to be associated with the texts.
* @param embeddings `Embeddings` instance used to generate vectors from the texts.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: QdrantLibArgs): Promise<QdrantVectorStore>;
/**
* Static method to create a `QdrantVectorStore` instance from `Document`
* instances. The documents are added to the Qdrant database.
* @param docs Array of `Document` instances to be added to the Qdrant database.
* @param embeddings `Embeddings` instance used to generate vectors from the documents.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: QdrantLibArgs): Promise<QdrantVectorStore>;
/**
* Static method to create a `QdrantVectorStore` instance from an existing
* collection in the Qdrant database.
* @param embeddings `Embeddings` instance used to generate vectors from the documents in the collection.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static fromExistingCollection(embeddings: EmbeddingsInterface, dbConfig: QdrantLibArgs): Promise<QdrantVectorStore>;
}