133 lines
5.1 KiB
JavaScript
133 lines
5.1 KiB
JavaScript
|
import { PromptTemplate, renderTemplate } from "@langchain/core/prompts";
|
||
|
import { LLMChain } from "../../chains/llm_chain.js";
|
||
|
import { Agent } from "../agent.js";
|
||
|
import { deserializeHelper } from "../helpers.js";
|
||
|
import { ZeroShotAgentOutputParser } from "./outputParser.js";
|
||
|
import { FORMAT_INSTRUCTIONS, PREFIX, SUFFIX } from "./prompt.js";
|
||
|
/**
|
||
|
* Agent for the MRKL chain.
|
||
|
* @augments Agent
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
*
|
||
|
* const agent = new ZeroShotAgent({
|
||
|
* llmChain: new LLMChain({
|
||
|
* llm: new ChatOpenAI({ temperature: 0 }),
|
||
|
* prompt: ZeroShotAgent.createPrompt([new SerpAPI(), new Calculator()], {
|
||
|
* prefix: `Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:`,
|
||
|
* suffix: `Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
|
||
|
* Question: {input}
|
||
|
* {agent_scratchpad}`,
|
||
|
* inputVariables: ["input", "agent_scratchpad"],
|
||
|
* }),
|
||
|
* }),
|
||
|
* allowedTools: ["search", "calculator"],
|
||
|
* });
|
||
|
*
|
||
|
* const result = await agent.invoke({
|
||
|
* input: `Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?`,
|
||
|
* });
|
||
|
* ```
|
||
|
*
|
||
|
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createReactAgent.html | createReactAgent method instead}.
|
||
|
*/
|
||
|
export class ZeroShotAgent extends Agent {
|
||
|
static lc_name() {
|
||
|
return "ZeroShotAgent";
|
||
|
}
|
||
|
constructor(input) {
|
||
|
const outputParser = input?.outputParser ?? ZeroShotAgent.getDefaultOutputParser();
|
||
|
super({ ...input, outputParser });
|
||
|
Object.defineProperty(this, "lc_namespace", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: ["langchain", "agents", "mrkl"]
|
||
|
});
|
||
|
}
|
||
|
_agentType() {
|
||
|
return "zero-shot-react-description";
|
||
|
}
|
||
|
observationPrefix() {
|
||
|
return "Observation: ";
|
||
|
}
|
||
|
llmPrefix() {
|
||
|
return "Thought:";
|
||
|
}
|
||
|
/**
|
||
|
* Returns the default output parser for the ZeroShotAgent.
|
||
|
* @param fields Optional arguments for the output parser.
|
||
|
* @returns An instance of ZeroShotAgentOutputParser.
|
||
|
*/
|
||
|
static getDefaultOutputParser(fields) {
|
||
|
return new ZeroShotAgentOutputParser(fields);
|
||
|
}
|
||
|
/**
|
||
|
* Validates the tools for the ZeroShotAgent. Throws an error if any tool
|
||
|
* does not have a description.
|
||
|
* @param tools List of tools to validate.
|
||
|
*/
|
||
|
static validateTools(tools) {
|
||
|
const descriptionlessTool = tools.find((tool) => !tool.description);
|
||
|
if (descriptionlessTool) {
|
||
|
const msg = `Got a tool ${descriptionlessTool.name} without a description.` +
|
||
|
` This agent requires descriptions for all tools.`;
|
||
|
throw new Error(msg);
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Create prompt in the style of the zero shot agent.
|
||
|
*
|
||
|
* @param tools - List of tools the agent will have access to, used to format the prompt.
|
||
|
* @param args - Arguments to create the prompt with.
|
||
|
* @param args.suffix - String to put after the list of tools.
|
||
|
* @param args.prefix - String to put before the list of tools.
|
||
|
* @param args.inputVariables - List of input variables the final prompt will expect.
|
||
|
*/
|
||
|
static createPrompt(tools, args) {
|
||
|
const { prefix = PREFIX, suffix = SUFFIX, inputVariables = ["input", "agent_scratchpad"], } = args ?? {};
|
||
|
const toolStrings = tools
|
||
|
.map((tool) => `${tool.name}: ${tool.description}`)
|
||
|
.join("\n");
|
||
|
const toolNames = tools.map((tool) => tool.name);
|
||
|
const formatInstructions = renderTemplate(FORMAT_INSTRUCTIONS, "f-string", {
|
||
|
tool_names: toolNames,
|
||
|
});
|
||
|
const template = [prefix, toolStrings, formatInstructions, suffix].join("\n\n");
|
||
|
return new PromptTemplate({
|
||
|
template,
|
||
|
inputVariables,
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* Creates a ZeroShotAgent from a Large Language Model and a set of tools.
|
||
|
* @param llm The Large Language Model to use.
|
||
|
* @param tools The tools for the agent to use.
|
||
|
* @param args Optional arguments for creating the agent.
|
||
|
* @returns A new instance of ZeroShotAgent.
|
||
|
*/
|
||
|
static fromLLMAndTools(llm, tools, args) {
|
||
|
ZeroShotAgent.validateTools(tools);
|
||
|
const prompt = ZeroShotAgent.createPrompt(tools, args);
|
||
|
const outputParser = args?.outputParser ?? ZeroShotAgent.getDefaultOutputParser();
|
||
|
const chain = new LLMChain({
|
||
|
prompt,
|
||
|
llm,
|
||
|
callbacks: args?.callbacks ?? args?.callbackManager,
|
||
|
});
|
||
|
return new ZeroShotAgent({
|
||
|
llmChain: chain,
|
||
|
allowedTools: tools.map((t) => t.name),
|
||
|
outputParser,
|
||
|
});
|
||
|
}
|
||
|
static async deserialize(data) {
|
||
|
const { llm, tools, ...rest } = data;
|
||
|
return deserializeHelper(llm, tools, rest, (llm, tools, args) => ZeroShotAgent.fromLLMAndTools(llm, tools, {
|
||
|
prefix: args.prefix,
|
||
|
suffix: args.suffix,
|
||
|
inputVariables: args.input_variables,
|
||
|
}), (args) => new ZeroShotAgent(args));
|
||
|
}
|
||
|
}
|