agsamantha/node_modules/langchain/dist/agents/openai_tools/index.cjs

91 lines
3.2 KiB
JavaScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.createOpenAIToolsAgent = exports.OpenAIToolsAgentOutputParser = void 0;
const runnables_1 = require("@langchain/core/runnables");
const function_calling_1 = require("@langchain/core/utils/function_calling");
const openai_tools_js_1 = require("../format_scratchpad/openai_tools.cjs");
const output_parser_js_1 = require("./output_parser.cjs");
Object.defineProperty(exports, "OpenAIToolsAgentOutputParser", { enumerable: true, get: function () { return output_parser_js_1.OpenAIToolsAgentOutputParser; } });
const agent_js_1 = require("../agent.cjs");
/**
* Create an agent that uses OpenAI-style tool calling.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createOpenAIToolsAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { ChatPromptTemplate } from "@langchain/core/prompts";
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
*
* import { ChatOpenAI } from "@langchain/openai";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/openai-tools-agent
* const prompt = await pull<ChatPromptTemplate>(
* "hwchase17/openai-tools-agent"
* );
*
* const llm = new ChatOpenAI({
* temperature: 0,
* modelName: "gpt-3.5-turbo-1106",
* });
*
* const agent = await createOpenAIToolsAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* chat_history: [
* new HumanMessage("hi! my name is cob"),
* new AIMessage("Hello Cob! How can I assist you today?"),
* ],
* });
* ```
*/
async function createOpenAIToolsAgent({ llm, tools, prompt, streamRunnable, }) {
if (!prompt.inputVariables.includes("agent_scratchpad")) {
throw new Error([
`Prompt must have an input variable named "agent_scratchpad".`,
`Found ${JSON.stringify(prompt.inputVariables)} instead.`,
].join("\n"));
}
const modelWithTools = llm.bind({
tools: tools.map((tool) => (0, function_calling_1.convertToOpenAITool)(tool)),
});
const agent = agent_js_1.AgentRunnableSequence.fromRunnables([
runnables_1.RunnablePassthrough.assign({
agent_scratchpad: (input) => (0, openai_tools_js_1.formatToOpenAIToolMessages)(input.steps),
}),
prompt,
modelWithTools,
new output_parser_js_1.OpenAIToolsAgentOutputParser(),
], {
name: "OpenAIToolsAgent",
streamRunnable,
singleAction: false,
});
return agent;
}
exports.createOpenAIToolsAgent = createOpenAIToolsAgent;