83 lines
2.8 KiB
JavaScript
83 lines
2.8 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.createReactAgent = void 0;
|
||
|
const runnables_1 = require("@langchain/core/runnables");
|
||
|
const render_js_1 = require("../../tools/render.cjs");
|
||
|
const log_js_1 = require("../format_scratchpad/log.cjs");
|
||
|
const output_parser_js_1 = require("./output_parser.cjs");
|
||
|
const agent_js_1 = require("../agent.cjs");
|
||
|
/**
|
||
|
* Create an agent that uses ReAct prompting.
|
||
|
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
|
||
|
* @returns A runnable sequence representing an agent. It takes as input all the same input
|
||
|
* variables as the prompt passed in does. It returns as output either an
|
||
|
* AgentAction or AgentFinish.
|
||
|
*
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* import { AgentExecutor, createReactAgent } from "langchain/agents";
|
||
|
* import { pull } from "langchain/hub";
|
||
|
* import type { PromptTemplate } from "@langchain/core/prompts";
|
||
|
*
|
||
|
* import { OpenAI } from "@langchain/openai";
|
||
|
*
|
||
|
* // Define the tools the agent will have access to.
|
||
|
* const tools = [...];
|
||
|
*
|
||
|
* // Get the prompt to use - you can modify this!
|
||
|
* // If you want to see the prompt in full, you can at:
|
||
|
* // https://smith.langchain.com/hub/hwchase17/react
|
||
|
* const prompt = await pull<PromptTemplate>("hwchase17/react");
|
||
|
*
|
||
|
* const llm = new OpenAI({
|
||
|
* temperature: 0,
|
||
|
* });
|
||
|
*
|
||
|
* const agent = await createReactAgent({
|
||
|
* llm,
|
||
|
* tools,
|
||
|
* prompt,
|
||
|
* });
|
||
|
*
|
||
|
* const agentExecutor = new AgentExecutor({
|
||
|
* agent,
|
||
|
* tools,
|
||
|
* });
|
||
|
*
|
||
|
* const result = await agentExecutor.invoke({
|
||
|
* input: "what is LangChain?",
|
||
|
* });
|
||
|
* ```
|
||
|
*/
|
||
|
async function createReactAgent({ llm, tools, prompt, streamRunnable, }) {
|
||
|
const missingVariables = ["tools", "tool_names", "agent_scratchpad"].filter((v) => !prompt.inputVariables.includes(v));
|
||
|
if (missingVariables.length > 0) {
|
||
|
throw new Error(`Provided prompt is missing required input variables: ${JSON.stringify(missingVariables)}`);
|
||
|
}
|
||
|
const toolNames = tools.map((tool) => tool.name);
|
||
|
const partialedPrompt = await prompt.partial({
|
||
|
tools: (0, render_js_1.renderTextDescription)(tools),
|
||
|
tool_names: toolNames.join(", "),
|
||
|
});
|
||
|
// TODO: Add .bind to core runnable interface.
|
||
|
const llmWithStop = llm.bind({
|
||
|
stop: ["\nObservation:"],
|
||
|
});
|
||
|
const agent = agent_js_1.AgentRunnableSequence.fromRunnables([
|
||
|
runnables_1.RunnablePassthrough.assign({
|
||
|
agent_scratchpad: (input) => (0, log_js_1.formatLogToString)(input.steps),
|
||
|
}),
|
||
|
partialedPrompt,
|
||
|
llmWithStop,
|
||
|
new output_parser_js_1.ReActSingleInputOutputParser({
|
||
|
toolNames,
|
||
|
}),
|
||
|
], {
|
||
|
name: "ReactAgent",
|
||
|
streamRunnable,
|
||
|
singleAction: true,
|
||
|
});
|
||
|
return agent;
|
||
|
}
|
||
|
exports.createReactAgent = createReactAgent;
|