66 lines
2.2 KiB
JavaScript
66 lines
2.2 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.XMLAgentOutputParser = void 0;
|
||
|
const output_parsers_1 = require("@langchain/core/output_parsers");
|
||
|
const types_js_1 = require("../types.cjs");
|
||
|
/**
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* const prompt = ChatPromptTemplate.fromMessages([
|
||
|
* HumanMessagePromptTemplate.fromTemplate(AGENT_INSTRUCTIONS),
|
||
|
* new MessagesPlaceholder("agent_scratchpad"),
|
||
|
* ]);
|
||
|
* const runnableAgent = RunnableSequence.from([
|
||
|
* ...rest of runnable
|
||
|
* prompt,
|
||
|
* new ChatAnthropic({ modelName: "claude-2", temperature: 0 }).bind({
|
||
|
* stop: ["</tool_input>", "</final_answer>"],
|
||
|
* }),
|
||
|
* new XMLAgentOutputParser(),
|
||
|
* ]);
|
||
|
* const result = await executor.invoke({
|
||
|
* input: "What is the weather in Honolulu?",
|
||
|
* tools: [],
|
||
|
* });
|
||
|
* ```
|
||
|
*/
|
||
|
class XMLAgentOutputParser extends types_js_1.AgentActionOutputParser {
|
||
|
constructor() {
|
||
|
super(...arguments);
|
||
|
Object.defineProperty(this, "lc_namespace", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: ["langchain", "agents", "xml"]
|
||
|
});
|
||
|
}
|
||
|
static lc_name() {
|
||
|
return "XMLAgentOutputParser";
|
||
|
}
|
||
|
/**
|
||
|
* Parses the output text from the agent and returns an AgentAction or
|
||
|
* AgentFinish object.
|
||
|
* @param text The output text from the agent.
|
||
|
* @returns An AgentAction or AgentFinish object.
|
||
|
*/
|
||
|
async parse(text) {
|
||
|
if (text.includes("</tool>")) {
|
||
|
const [tool, toolInput] = text.split("</tool>");
|
||
|
const _tool = tool.split("<tool>")[1];
|
||
|
const _toolInput = toolInput.split("<tool_input>")[1];
|
||
|
return { tool: _tool, toolInput: _toolInput, log: text };
|
||
|
}
|
||
|
else if (text.includes("<final_answer>")) {
|
||
|
const [, answer] = text.split("<final_answer>");
|
||
|
return { returnValues: { output: answer }, log: text };
|
||
|
}
|
||
|
else {
|
||
|
throw new output_parsers_1.OutputParserException(`Could not parse LLM output: ${text}`);
|
||
|
}
|
||
|
}
|
||
|
getFormatInstructions() {
|
||
|
throw new Error("getFormatInstructions not implemented inside OpenAIFunctionsAgentOutputParser.");
|
||
|
}
|
||
|
}
|
||
|
exports.XMLAgentOutputParser = XMLAgentOutputParser;
|