agsamantha/node_modules/langchain/dist/chains/llm_chain.d.ts

93 lines
4 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { BaseLanguageModel, BaseLanguageModelInterface, BaseLanguageModelInput } from "@langchain/core/language_models/base";
import type { ChainValues } from "@langchain/core/utils/types";
import type { Generation } from "@langchain/core/outputs";
import type { BaseMessage } from "@langchain/core/messages";
import type { BasePromptValueInterface } from "@langchain/core/prompt_values";
import { BasePromptTemplate } from "@langchain/core/prompts";
import { BaseLLMOutputParser } from "@langchain/core/output_parsers";
import { CallbackManager, BaseCallbackConfig, CallbackManagerForChainRun, Callbacks } from "@langchain/core/callbacks/manager";
import { Runnable } from "@langchain/core/runnables";
import { BaseChain, ChainInputs } from "./base.js";
import { SerializedLLMChain } from "./serde.js";
type LLMType = BaseLanguageModelInterface | Runnable<BaseLanguageModelInput, string> | Runnable<BaseLanguageModelInput, BaseMessage>;
type CallOptionsIfAvailable<T> = T extends {
CallOptions: infer CO;
} ? CO : any;
/**
* Interface for the input parameters of the LLMChain class.
*/
export interface LLMChainInput<T extends string | object = string, Model extends LLMType = LLMType> extends ChainInputs {
/** Prompt object to use */
prompt: BasePromptTemplate;
/** LLM Wrapper to use */
llm: Model;
/** Kwargs to pass to LLM */
llmKwargs?: CallOptionsIfAvailable<Model>;
/** OutputParser to use */
outputParser?: BaseLLMOutputParser<T>;
/** Key to use for output, defaults to `text` */
outputKey?: string;
}
/**
* @deprecated This class will be removed in 1.0.0. Use the LangChain Expression Language (LCEL) instead.
* See the example below for how to use LCEL with the LLMChain class:
*
* Chain to run queries against LLMs.
*
* @example
* ```ts
* import { ChatPromptTemplate } from "@langchain/core/prompts";
* import { ChatOpenAI } from "@langchain/openai";
*
* const prompt = ChatPromptTemplate.fromTemplate("Tell me a {adjective} joke");
* const llm = new ChatOpenAI();
* const chain = prompt.pipe(llm);
*
* const response = await chain.invoke({ adjective: "funny" });
* ```
*/
export declare class LLMChain<T extends string | object = string, Model extends LLMType = LLMType> extends BaseChain implements LLMChainInput<T> {
static lc_name(): string;
lc_serializable: boolean;
prompt: BasePromptTemplate;
llm: Model;
llmKwargs?: CallOptionsIfAvailable<Model>;
outputKey: string;
outputParser?: BaseLLMOutputParser<T>;
get inputKeys(): string[];
get outputKeys(): string[];
constructor(fields: LLMChainInput<T, Model>);
private getCallKeys;
/** @ignore */
_selectMemoryInputs(values: ChainValues): ChainValues;
/** @ignore */
_getFinalOutput(generations: Generation[], promptValue: BasePromptValueInterface, runManager?: CallbackManagerForChainRun): Promise<unknown>;
/**
* Run the core logic of this chain and add to output if desired.
*
* Wraps _call and handles memory.
*/
call(values: ChainValues & CallOptionsIfAvailable<Model>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;
/** @ignore */
_call(values: ChainValues & CallOptionsIfAvailable<Model>, runManager?: CallbackManagerForChainRun): Promise<ChainValues>;
/**
* Format prompt with values and pass to LLM
*
* @param values - keys to pass to prompt template
* @param callbackManager - CallbackManager to use
* @returns Completion from LLM.
*
* @example
* ```ts
* llm.predict({ adjective: "funny" })
* ```
*/
predict(values: ChainValues & CallOptionsIfAvailable<Model>, callbackManager?: CallbackManager): Promise<T>;
_chainType(): "llm";
static deserialize(data: SerializedLLMChain): Promise<LLMChain<string, BaseLanguageModel<any, import("@langchain/core/language_models/base").BaseLanguageModelCallOptions>>>;
/** @deprecated */
serialize(): SerializedLLMChain;
_getNumTokens(text: string): Promise<number>;
}
export {};