agsamantha/node_modules/langchain/dist/experimental/autogpt/agent.js

207 lines
7.8 KiB
JavaScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { AIMessage, HumanMessage, SystemMessage, } from "@langchain/core/messages";
import { getEmbeddingContextSize, getModelContextSize, } from "@langchain/core/language_models/base";
import { LLMChain } from "../../chains/llm_chain.js";
import { AutoGPTOutputParser } from "./output_parser.js";
import { AutoGPTPrompt } from "./prompt.js";
// import { HumanInputRun } from "./tools/human/tool"; // TODO
import { FINISH_NAME } from "./schema.js";
import { TokenTextSplitter } from "../../text_splitter.js";
/**
* Class representing the AutoGPT concept with LangChain primitives. It is
* designed to be used with a set of tools such as a search tool,
* write-file tool, and a read-file tool.
* @example
* ```typescript
* const autogpt = AutoGPT.fromLLMAndTools(
* new ChatOpenAI({ temperature: 0 }),
* [
* new ReadFileTool({ store: new InMemoryFileStore() }),
* new WriteFileTool({ store: new InMemoryFileStore() }),
* new SerpAPI("YOUR_SERPAPI_API_KEY", {
* location: "San Francisco,California,United States",
* hl: "en",
* gl: "us",
* }),
* ],
* {
* memory: new MemoryVectorStore(new OpenAIEmbeddings()).asRetriever(),
* aiName: "Tom",
* aiRole: "Assistant",
* },
* );
* const result = await autogpt.run(["write a weather report for SF today"]);
* ```
*/
export class AutoGPT {
constructor({ aiName, memory, chain, outputParser, tools, feedbackTool, maxIterations, }) {
Object.defineProperty(this, "aiName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "memory", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "fullMessageHistory", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "nextActionCount", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "chain", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "outputParser", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "tools", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "feedbackTool", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "maxIterations", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
// Currently not generic enough to support any text splitter.
Object.defineProperty(this, "textSplitter", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.aiName = aiName;
this.memory = memory;
this.fullMessageHistory = [];
this.nextActionCount = 0;
this.chain = chain;
this.outputParser = outputParser;
this.tools = tools;
this.feedbackTool = feedbackTool;
this.maxIterations = maxIterations;
const chunkSize = getEmbeddingContextSize("modelName" in memory.vectorStore.embeddings
? memory.vectorStore.embeddings.modelName
: undefined);
this.textSplitter = new TokenTextSplitter({
chunkSize,
chunkOverlap: Math.round(chunkSize / 10),
});
}
/**
* Creates a new AutoGPT instance from a given LLM and a set of tools.
* @param llm A BaseChatModel object.
* @param tools An array of ObjectTool objects.
* @param options.aiName The name of the AI.
* @param options.aiRole The role of the AI.
* @param options.memory A VectorStoreRetriever object that represents the memory of the AI.
* @param options.maxIterations The maximum number of iterations the AI can perform.
* @param options.outputParser An AutoGPTOutputParser object that parses the output of the AI.
* @returns A new instance of the AutoGPT class.
*/
static fromLLMAndTools(llm, tools, { aiName, aiRole, memory, maxIterations = 100,
// humanInTheLoop = false,
outputParser = new AutoGPTOutputParser(), }) {
const prompt = new AutoGPTPrompt({
aiName,
aiRole,
tools,
tokenCounter: llm.getNumTokens.bind(llm),
sendTokenLimit: getModelContextSize("modelName" in llm ? llm.modelName : "gpt2"),
});
// const feedbackTool = humanInTheLoop ? new HumanInputRun() : null;
const chain = new LLMChain({ llm, prompt });
return new AutoGPT({
aiName,
memory,
chain,
outputParser,
tools,
// feedbackTool,
maxIterations,
});
}
/**
* Runs the AI with a given set of goals.
* @param goals An array of strings representing the goals.
* @returns A string representing the result of the run or undefined if the maximum number of iterations is reached without a result.
*/
async run(goals) {
const user_input = "Determine which next command to use, and respond using the format specified above:";
let loopCount = 0;
while (loopCount < this.maxIterations) {
loopCount += 1;
const { text: assistantReply } = await this.chain.call({
goals,
user_input,
memory: this.memory,
messages: this.fullMessageHistory,
});
// Print the assistant reply
console.log(assistantReply);
this.fullMessageHistory.push(new HumanMessage(user_input));
this.fullMessageHistory.push(new AIMessage(assistantReply));
const action = await this.outputParser.parse(assistantReply);
const tools = this.tools.reduce((acc, tool) => ({ ...acc, [tool.name]: tool }), {});
if (action.name === FINISH_NAME) {
return action.args.response;
}
let result;
if (action.name in tools) {
const tool = tools[action.name];
let observation;
try {
observation = await tool.call(action.args);
}
catch (e) {
observation = `Error in args: ${e}`;
}
result = `Command ${tool.name} returned: ${observation}`;
}
else if (action.name === "ERROR") {
result = `Error: ${action.args}. `;
}
else {
result = `Unknown command '${action.name}'. Please refer to the 'COMMANDS' list for available commands and only respond in the specified JSON format.`;
}
let memoryToAdd = `Assistant Reply: ${assistantReply}\nResult: ${result} `;
if (this.feedbackTool) {
const feedback = `\n${await this.feedbackTool.call("Input: ")}`;
if (feedback === "q" || feedback === "stop") {
console.log("EXITING");
return "EXITING";
}
memoryToAdd += feedback;
}
const documents = await this.textSplitter.createDocuments([memoryToAdd]);
await this.memory.addDocuments(documents);
this.fullMessageHistory.push(new SystemMessage(result));
}
return undefined;
}
}