agsamantha/node_modules/@langchain/community/dist/embeddings/baidu_qianfan.d.ts

73 lines
2.8 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { Embeddings, type EmbeddingsParams } from "@langchain/core/embeddings";
/** @deprecated Install and import from @langchain/baidu-qianfan instead. */
export interface BaiduQianfanEmbeddingsParams extends EmbeddingsParams {
/** Model name to use */
modelName: "embedding-v1" | "bge_large_zh" | "bge_large_en" | "tao-8k";
/**
* Timeout to use when making requests to BaiduQianfan.
*/
timeout?: number;
/**
* The maximum number of characters allowed for embedding in a single request varies by model:
* - Embedding-V1 model: up to 1000 characters
* - bge-large-zh model: up to 2000 characters
* - bge-large-en model: up to 2000 characters
* - tao-8k model: up to 28000 characters
*
* Note: These limits are model-specific and should be adhered to for optimal performance.
*/
batchSize?: number;
/**
* Whether to strip new lines from the input text.
*/
stripNewLines?: boolean;
}
export declare class BaiduQianfanEmbeddings extends Embeddings implements BaiduQianfanEmbeddingsParams {
modelName: BaiduQianfanEmbeddingsParams["modelName"];
batchSize: number;
stripNewLines: boolean;
baiduApiKey: string;
baiduSecretKey: string;
accessToken: string;
constructor(fields?: Partial<BaiduQianfanEmbeddingsParams> & {
verbose?: boolean;
baiduApiKey?: string;
baiduSecretKey?: string;
});
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the BaiduQianFan API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
embedDocuments(texts: string[]): Promise<number[][]>;
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param text Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the document.
*/
embedQuery(text: string): Promise<number[]>;
/**
* Method to generate an embedding params.
* @param texts Array of documents to generate embeddings for.
* @returns an embedding params.
*/
private getParams;
/**
* Private method to make a request to the BaiduAI API to generate
* embeddings. Handles the retry logic and returns the response from the
* API.
* @param request Request to send to the BaiduAI API.
* @returns Promise that resolves to the response from the API.
*/
private embeddingWithRetry;
/**
* Method that retrieves the access token for making requests to the Baidu
* API.
* @returns The access token for making requests to the Baidu API.
*/
private getAccessToken;
}