84 lines
2.8 KiB
JavaScript
84 lines
2.8 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.LlamaCppEmbeddings = void 0;
|
||
|
const embeddings_1 = require("@langchain/core/embeddings");
|
||
|
const llama_cpp_js_1 = require("../utils/llama_cpp.cjs");
|
||
|
/**
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* // Initialize LlamaCppEmbeddings with the path to the model file
|
||
|
* const embeddings = new LlamaCppEmbeddings({
|
||
|
* modelPath: "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin",
|
||
|
* });
|
||
|
*
|
||
|
* // Embed a query string using the Llama embeddings
|
||
|
* const res = embeddings.embedQuery("Hello Llama!");
|
||
|
*
|
||
|
* // Output the resulting embeddings
|
||
|
* console.log(res);
|
||
|
*
|
||
|
* ```
|
||
|
*/
|
||
|
class LlamaCppEmbeddings extends embeddings_1.Embeddings {
|
||
|
constructor(inputs) {
|
||
|
super(inputs);
|
||
|
Object.defineProperty(this, "_model", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "_context", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
const _inputs = inputs;
|
||
|
_inputs.embedding = true;
|
||
|
this._model = (0, llama_cpp_js_1.createLlamaModel)(_inputs);
|
||
|
this._context = (0, llama_cpp_js_1.createLlamaContext)(this._model, _inputs);
|
||
|
}
|
||
|
/**
|
||
|
* Generates embeddings for an array of texts.
|
||
|
* @param texts - An array of strings to generate embeddings for.
|
||
|
* @returns A Promise that resolves to an array of embeddings.
|
||
|
*/
|
||
|
async embedDocuments(texts) {
|
||
|
const tokensArray = [];
|
||
|
for (const text of texts) {
|
||
|
const encodings = await this.caller.call(() => new Promise((resolve) => {
|
||
|
resolve(this._context.encode(text));
|
||
|
}));
|
||
|
tokensArray.push(encodings);
|
||
|
}
|
||
|
const embeddings = [];
|
||
|
for (const tokens of tokensArray) {
|
||
|
const embedArray = [];
|
||
|
for (let i = 0; i < tokens.length; i += 1) {
|
||
|
const nToken = +tokens[i];
|
||
|
embedArray.push(nToken);
|
||
|
}
|
||
|
embeddings.push(embedArray);
|
||
|
}
|
||
|
return embeddings;
|
||
|
}
|
||
|
/**
|
||
|
* Generates an embedding for a single text.
|
||
|
* @param text - A string to generate an embedding for.
|
||
|
* @returns A Promise that resolves to an array of numbers representing the embedding.
|
||
|
*/
|
||
|
async embedQuery(text) {
|
||
|
const tokens = [];
|
||
|
const encodings = await this.caller.call(() => new Promise((resolve) => {
|
||
|
resolve(this._context.encode(text));
|
||
|
}));
|
||
|
for (let i = 0; i < encodings.length; i += 1) {
|
||
|
const token = +encodings[i];
|
||
|
tokens.push(token);
|
||
|
}
|
||
|
return tokens;
|
||
|
}
|
||
|
}
|
||
|
exports.LlamaCppEmbeddings = LlamaCppEmbeddings;
|