agsamantha/node_modules/@langchain/community/dist/embeddings/llama_cpp.cjs

84 lines
2.8 KiB
JavaScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.LlamaCppEmbeddings = void 0;
const embeddings_1 = require("@langchain/core/embeddings");
const llama_cpp_js_1 = require("../utils/llama_cpp.cjs");
/**
* @example
* ```typescript
* // Initialize LlamaCppEmbeddings with the path to the model file
* const embeddings = new LlamaCppEmbeddings({
* modelPath: "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin",
* });
*
* // Embed a query string using the Llama embeddings
* const res = embeddings.embedQuery("Hello Llama!");
*
* // Output the resulting embeddings
* console.log(res);
*
* ```
*/
class LlamaCppEmbeddings extends embeddings_1.Embeddings {
constructor(inputs) {
super(inputs);
Object.defineProperty(this, "_model", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "_context", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
const _inputs = inputs;
_inputs.embedding = true;
this._model = (0, llama_cpp_js_1.createLlamaModel)(_inputs);
this._context = (0, llama_cpp_js_1.createLlamaContext)(this._model, _inputs);
}
/**
* Generates embeddings for an array of texts.
* @param texts - An array of strings to generate embeddings for.
* @returns A Promise that resolves to an array of embeddings.
*/
async embedDocuments(texts) {
const tokensArray = [];
for (const text of texts) {
const encodings = await this.caller.call(() => new Promise((resolve) => {
resolve(this._context.encode(text));
}));
tokensArray.push(encodings);
}
const embeddings = [];
for (const tokens of tokensArray) {
const embedArray = [];
for (let i = 0; i < tokens.length; i += 1) {
const nToken = +tokens[i];
embedArray.push(nToken);
}
embeddings.push(embedArray);
}
return embeddings;
}
/**
* Generates an embedding for a single text.
* @param text - A string to generate an embedding for.
* @returns A Promise that resolves to an array of numbers representing the embedding.
*/
async embedQuery(text) {
const tokens = [];
const encodings = await this.caller.call(() => new Promise((resolve) => {
resolve(this._context.encode(text));
}));
for (let i = 0; i < encodings.length; i += 1) {
const token = +encodings[i];
tokens.push(token);
}
return tokens;
}
}
exports.LlamaCppEmbeddings = LlamaCppEmbeddings;