agsamantha/node_modules/@langchain/community/dist/embeddings/llama_cpp.d.ts

43 lines
1.5 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { LlamaModel, LlamaContext } from "node-llama-cpp";
import { Embeddings, type EmbeddingsParams } from "@langchain/core/embeddings";
import { LlamaBaseCppInputs } from "../utils/llama_cpp.js";
/**
* Note that the modelPath is the only required parameter. For testing you
* can set this in the environment variable `LLAMA_PATH`.
*/
export interface LlamaCppEmbeddingsParams extends LlamaBaseCppInputs, EmbeddingsParams {
}
/**
* @example
* ```typescript
* // Initialize LlamaCppEmbeddings with the path to the model file
* const embeddings = new LlamaCppEmbeddings({
* modelPath: "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin",
* });
*
* // Embed a query string using the Llama embeddings
* const res = embeddings.embedQuery("Hello Llama!");
*
* // Output the resulting embeddings
* console.log(res);
*
* ```
*/
export declare class LlamaCppEmbeddings extends Embeddings {
_model: LlamaModel;
_context: LlamaContext;
constructor(inputs: LlamaCppEmbeddingsParams);
/**
* Generates embeddings for an array of texts.
* @param texts - An array of strings to generate embeddings for.
* @returns A Promise that resolves to an array of embeddings.
*/
embedDocuments(texts: string[]): Promise<number[][]>;
/**
* Generates an embedding for a single text.
* @param text - A string to generate an embedding for.
* @returns A Promise that resolves to an array of numbers representing the embedding.
*/
embedQuery(text: string): Promise<number[]>;
}