62 lines
2.6 KiB
JavaScript
62 lines
2.6 KiB
JavaScript
|
/**
|
||
|
* Adapted from
|
||
|
* https://github.com/FurkanToprak/OkapiBM25
|
||
|
*
|
||
|
* Inlined due to CJS import issues.
|
||
|
*/
|
||
|
/** Gets word count. */
|
||
|
export const getWordCount = (corpus) => {
|
||
|
return ((corpus || "").match(/\w+/g) || []).length;
|
||
|
};
|
||
|
/** Number of occurences of a word in a string. */
|
||
|
export const getTermFrequency = (term, corpus) => {
|
||
|
return ((corpus || "").match(new RegExp(term, "g")) || []).length;
|
||
|
};
|
||
|
/** Inverse document frequency. */
|
||
|
export const getIDF = (term, documents) => {
|
||
|
// Number of relevant documents.
|
||
|
const relevantDocuments = documents.filter((document) => document.includes(term)).length;
|
||
|
return Math.log((documents.length - relevantDocuments + 0.5) / (relevantDocuments + 0.5) + 1);
|
||
|
};
|
||
|
/** Implementation of Okapi BM25 algorithm.
|
||
|
* @param documents: Collection of documents.
|
||
|
* @param keywords: query terms.
|
||
|
* @param constants: Contains free parameters k1 and b. b=0.75 and k1=1.2 by default.
|
||
|
* @param sort: A function that allows you to sort queries by a given rule. If not provided, returns results corresponding to the original order.
|
||
|
* If this option is provided, the return type will not be an array of scores but an array of documents with their scores.
|
||
|
*/
|
||
|
export function BM25(documents, keywords, constants, sorter) {
|
||
|
const b = constants && constants.b ? constants.b : 0.75;
|
||
|
const k1 = constants && constants.k1 ? constants.k1 : 1.2;
|
||
|
const documentLengths = documents.map((document) => getWordCount(document));
|
||
|
const averageDocumentLength = documentLengths.reduce((a, b) => a + b, 0) / documents.length;
|
||
|
const idfByKeyword = keywords.reduce((obj, keyword) => {
|
||
|
obj.set(keyword, getIDF(keyword, documents));
|
||
|
return obj;
|
||
|
}, new Map());
|
||
|
const scores = documents.map((document, index) => {
|
||
|
const score = keywords
|
||
|
.map((keyword) => {
|
||
|
const inverseDocumentFrequency = idfByKeyword.get(keyword);
|
||
|
if (inverseDocumentFrequency === undefined) {
|
||
|
throw new Error("Missing keyword.");
|
||
|
}
|
||
|
const termFrequency = getTermFrequency(keyword, document);
|
||
|
const documentLength = documentLengths[index];
|
||
|
return ((inverseDocumentFrequency * (termFrequency * (k1 + 1))) /
|
||
|
(termFrequency +
|
||
|
k1 * (1 - b + (b * documentLength) / averageDocumentLength)));
|
||
|
})
|
||
|
.reduce((a, b) => a + b, 0);
|
||
|
if (sorter) {
|
||
|
return { score, document };
|
||
|
}
|
||
|
return score;
|
||
|
});
|
||
|
// sort the results
|
||
|
if (sorter) {
|
||
|
return scores.sort(sorter);
|
||
|
}
|
||
|
return scores;
|
||
|
}
|