agsamantha/node_modules/@langchain/community/dist/vectorstores/cassandra.d.ts

109 lines
5.4 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore, MaxMarginalRelevanceSearchOptions } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
import { CassandraClientArgs, Column, Filter, Index, WhereClause, CassandraTableArgs, CassandraTable } from "../utils/cassandra.js";
/**
* @deprecated
* Import from "../utils/cassandra.js" instead.
*/
export { Column, Filter, Index, WhereClause };
export type SupportedVectorTypes = "cosine" | "dot_product" | "euclidean";
export interface CassandraLibArgs extends CassandraClientArgs, Omit<CassandraTableArgs, "nonKeyColumns" | "keyspace"> {
keyspace: string;
vectorType?: SupportedVectorTypes;
dimensions: number;
metadataColumns?: Column[];
nonKeyColumns?: Column | Column[];
}
/**
* Class for interacting with the Cassandra database. It extends the
* VectorStore class and provides methods for adding vectors and
* documents, searching for similar vectors, and creating instances from
* texts or documents.
*/
export declare class CassandraStore extends VectorStore {
FilterType: WhereClause;
private readonly table;
private readonly idColumnAutoName;
private readonly idColumnAutoGenerated;
private readonly vectorColumnName;
private readonly vectorColumn;
private readonly textColumnName;
private readonly textColumn;
private readonly metadataColumnDefaultName;
private readonly metadataColumns;
private readonly similarityColumn;
private readonly embeddingColumnAlias;
_vectorstoreType(): string;
private _cleanArgs;
private _getColumnByName;
constructor(embeddings: EmbeddingsInterface, args: CassandraLibArgs);
/**
* Method to save vectors to the Cassandra database.
* @param vectors Vectors to save.
* @param documents The documents associated with the vectors.
* @returns Promise that resolves when the vectors have been added.
*/
addVectors(vectors: number[][], documents: Document[]): Promise<void>;
getCassandraTable(): CassandraTable;
/**
* Method to add documents to the Cassandra database.
* @param documents The documents to add.
* @returns Promise that resolves when the documents have been added.
*/
addDocuments(documents: Document[]): Promise<void>;
/**
* Helper method to search for vectors that are similar to a given query vector.
* @param query The query vector.
* @param k The number of similar Documents to return.
* @param filter Optional filter to be applied as a WHERE clause.
* @param includeEmbedding Whether to include the embedding vectors in the results.
* @returns Promise that resolves with an array of tuples, each containing a Document and a score.
*/
search(query: number[], k: number, filter?: WhereClause, includeEmbedding?: boolean): Promise<[Document, number][]>;
/**
* Method to search for vectors that are similar to a given query vector.
* @param query The query vector.
* @param k The number of similar Documents to return.
* @param filter Optional filter to be applied as a WHERE clause.
* @returns Promise that resolves with an array of tuples, each containing a Document and a score.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: WhereClause): Promise<[Document, number][]>;
/**
* Method to search for vectors that are similar to a given query vector, but with
* the results selected using the maximal marginal relevance.
* @param query The query string.
* @param options.k The number of similar Documents to return.
* @param options.fetchK=4*k The number of records to fetch before passing to the MMR algorithm.
* @param options.lambda=0.5 The degree of diversity among the results between 0 (maximum diversity) and 1 (minimum diversity).
* @param options.filter Optional filter to be applied as a WHERE clause.
* @returns List of documents selected by maximal marginal relevance.
*/
maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
/**
* Static method to create an instance of CassandraStore from texts.
* @param texts The texts to use.
* @param metadatas The metadata associated with the texts.
* @param embeddings The embeddings to use.
* @param args The arguments for the CassandraStore.
* @returns Promise that resolves with a new instance of CassandraStore.
*/
static fromTexts(texts: string[], metadatas: object | object[], embeddings: EmbeddingsInterface, args: CassandraLibArgs): Promise<CassandraStore>;
/**
* Static method to create an instance of CassandraStore from documents.
* @param docs The documents to use.
* @param embeddings The embeddings to use.
* @param args The arguments for the CassandraStore.
* @returns Promise that resolves with a new instance of CassandraStore.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, args: CassandraLibArgs): Promise<CassandraStore>;
/**
* Static method to create an instance of CassandraStore from an existing
* index.
* @param embeddings The embeddings to use.
* @param args The arguments for the CassandraStore.
* @returns Promise that resolves with a new instance of CassandraStore.
*/
static fromExistingIndex(embeddings: EmbeddingsInterface, args: CassandraLibArgs): Promise<CassandraStore>;
}