agsamantha/node_modules/@langchain/community/dist/vectorstores/googlevertexai.d.ts

187 lines
7.5 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { GoogleAuthOptions } from "google-auth-library";
import { VectorStore } from "@langchain/core/vectorstores";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { Document, DocumentInput } from "@langchain/core/documents";
import { AsyncCaller, AsyncCallerCallOptions, AsyncCallerParams } from "@langchain/core/utils/async_caller";
import { GoogleVertexAIConnection } from "../utils/googlevertexai-connection.js";
import { Docstore } from "../stores/doc/base.js";
import { GoogleVertexAIConnectionParams, GoogleResponse, GoogleAbstractedClientOpsMethod } from "../types/googlevertexai-types.js";
/**
* Allows us to create IdDocument classes that contain the ID.
*/
export interface IdDocumentInput extends DocumentInput {
id?: string;
}
/**
* A Document that optionally includes the ID of the document.
*/
export declare class IdDocument extends Document implements IdDocumentInput {
id?: string;
constructor(fields: IdDocumentInput);
}
interface IndexEndpointConnectionParams extends GoogleVertexAIConnectionParams<GoogleAuthOptions> {
indexEndpoint: string;
}
interface DeployedIndex {
id: string;
index: string;
}
interface IndexEndpointResponse extends GoogleResponse {
data: {
deployedIndexes: DeployedIndex[];
publicEndpointDomainName: string;
};
}
declare class IndexEndpointConnection extends GoogleVertexAIConnection<AsyncCallerCallOptions, IndexEndpointResponse, GoogleAuthOptions> {
indexEndpoint: string;
constructor(fields: IndexEndpointConnectionParams, caller: AsyncCaller);
buildUrl(): Promise<string>;
buildMethod(): GoogleAbstractedClientOpsMethod;
request(options: AsyncCallerCallOptions): Promise<IndexEndpointResponse>;
}
/**
* Used to represent parameters that are necessary to delete documents
* from the matching engine. These must be a list of string IDs
*/
export interface MatchingEngineDeleteParams {
ids: string[];
}
interface RemoveDatapointParams extends GoogleVertexAIConnectionParams<GoogleAuthOptions> {
index: string;
}
interface RemoveDatapointResponse extends GoogleResponse {
}
declare class RemoveDatapointConnection extends GoogleVertexAIConnection<AsyncCallerCallOptions, RemoveDatapointResponse, GoogleAuthOptions> {
index: string;
constructor(fields: RemoveDatapointParams, caller: AsyncCaller);
buildUrl(): Promise<string>;
buildMethod(): GoogleAbstractedClientOpsMethod;
request(datapointIds: string[], options: AsyncCallerCallOptions): Promise<RemoveDatapointResponse>;
}
interface UpsertDatapointParams extends GoogleVertexAIConnectionParams<GoogleAuthOptions> {
index: string;
}
export interface Restriction {
namespace: string;
allowList?: string[];
denyList?: string[];
}
interface CrowdingTag {
crowdingAttribute: string;
}
interface IndexDatapoint {
datapointId: string;
featureVector: number[];
restricts?: Restriction[];
crowdingTag?: CrowdingTag;
}
interface UpsertDatapointResponse extends GoogleResponse {
}
declare class UpsertDatapointConnection extends GoogleVertexAIConnection<AsyncCallerCallOptions, UpsertDatapointResponse, GoogleAuthOptions> {
index: string;
constructor(fields: UpsertDatapointParams, caller: AsyncCaller);
buildUrl(): Promise<string>;
buildMethod(): GoogleAbstractedClientOpsMethod;
request(datapoints: IndexDatapoint[], options: AsyncCallerCallOptions): Promise<UpsertDatapointResponse>;
}
/**
* Information about the Matching Engine public API endpoint.
* Primarily exported to allow for testing.
*/
export interface PublicAPIEndpointInfo {
apiEndpoint?: string;
deployedIndexId?: string;
}
/**
* Parameters necessary to configure the Matching Engine.
*/
export interface MatchingEngineArgs extends GoogleVertexAIConnectionParams<GoogleAuthOptions>, IndexEndpointConnectionParams, UpsertDatapointParams {
docstore: Docstore;
callerParams?: AsyncCallerParams;
callerOptions?: AsyncCallerCallOptions;
apiEndpoint?: string;
deployedIndexId?: string;
}
/**
* A class that represents a connection to a Google Vertex AI Matching Engine
* instance.
*/
export declare class MatchingEngine extends VectorStore implements MatchingEngineArgs {
FilterType: Restriction[];
/**
* Docstore that retains the document, stored by ID
*/
docstore: Docstore;
/**
* The host to connect to for queries and upserts.
*/
apiEndpoint: string;
apiVersion: string;
endpoint: string;
location: string;
/**
* The id for the index endpoint
*/
indexEndpoint: string;
/**
* The id for the index
*/
index: string;
/**
* Explicitly set Google Auth credentials if you cannot get them from google auth application-default login
* This is useful for serverless or autoscaling environments like Fargate
*/
authOptions: GoogleAuthOptions;
/**
* The id for the "deployed index", which is an identifier in the
* index endpoint that references the index (but is not the index id)
*/
deployedIndexId: string;
callerParams: AsyncCallerParams;
callerOptions: AsyncCallerCallOptions;
caller: AsyncCaller;
indexEndpointClient: IndexEndpointConnection;
removeDatapointClient: RemoveDatapointConnection;
upsertDatapointClient: UpsertDatapointConnection;
constructor(embeddings: EmbeddingsInterface, args: MatchingEngineArgs);
_vectorstoreType(): string;
addDocuments(documents: Document[]): Promise<void>;
addVectors(vectors: number[][], documents: Document[]): Promise<void>;
cleanMetadata(documentMetadata: Record<string, any>): {
[key: string]: string | number | boolean | string[] | null;
};
/**
* Given the metadata from a document, convert it to an array of Restriction
* objects that may be passed to the Matching Engine and stored.
* The default implementation flattens any metadata and includes it as
* an "allowList". Subclasses can choose to convert some of these to
* "denyList" items or to add additional restrictions (for example, to format
* dates into a different structure or to add additional restrictions
* based on the date).
* @param documentMetadata - The metadata from a document
* @returns a Restriction[] (or an array of a subclass, from the FilterType)
*/
metadataToRestrictions(documentMetadata: Record<string, any>): this["FilterType"];
/**
* Create an index datapoint for the vector and document id.
* If an id does not exist, create it and set the document to its value.
* @param vector
* @param document
*/
buildDatapoint(vector: number[], document: IdDocument): IndexDatapoint;
delete(params: MatchingEngineDeleteParams): Promise<void>;
similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[Document, number][]>;
/**
* For this index endpoint, figure out what API Endpoint URL and deployed
* index ID should be used to do upserts and queries.
* Also sets the `apiEndpoint` and `deployedIndexId` property for future use.
* @return The URL
*/
determinePublicAPIEndpoint(): Promise<PublicAPIEndpointInfo>;
getPublicAPIEndpoint(): Promise<string>;
getDeployedIndexId(): Promise<string>;
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: MatchingEngineArgs): Promise<VectorStore>;
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: MatchingEngineArgs): Promise<VectorStore>;
}
export {};