agsamantha/node_modules/@langchain/community/dist/vectorstores/voy.js

155 lines
6.6 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
/**
* Class that extends `VectorStore`. It allows to perform similarity search using
* Voi similarity search engine. The class requires passing Voy Client as an input parameter.
*/
export class VoyVectorStore extends VectorStore {
_vectorstoreType() {
return "voi";
}
constructor(client, embeddings) {
super(embeddings, {});
Object.defineProperty(this, "client", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "numDimensions", {
enumerable: true,
configurable: true,
writable: true,
value: null
});
Object.defineProperty(this, "docstore", {
enumerable: true,
configurable: true,
writable: true,
value: []
});
this.client = client;
this.embeddings = embeddings;
}
/**
* Adds documents to the Voy database. The documents are embedded using embeddings provided while instantiating the class.
* @param documents An array of `Document` instances associated with the vectors.
*/
async addDocuments(documents) {
const texts = documents.map(({ pageContent }) => pageContent);
if (documents.length === 0) {
return;
}
const firstVector = (await this.embeddings.embedDocuments(texts.slice(0, 1)))[0];
if (this.numDimensions === null) {
this.numDimensions = firstVector.length;
}
else if (this.numDimensions !== firstVector.length) {
throw new Error(`Vectors must have the same length as the number of dimensions (${this.numDimensions})`);
}
const restResults = await this.embeddings.embedDocuments(texts.slice(1));
await this.addVectors([firstVector, ...restResults], documents);
}
/**
* Adds vectors to the Voy database. The vectors are associated with
* the provided documents.
* @param vectors An array of vectors to be added to the database.
* @param documents An array of `Document` instances associated with the vectors.
*/
async addVectors(vectors, documents) {
if (vectors.length === 0) {
return;
}
if (this.numDimensions === null) {
this.numDimensions = vectors[0].length;
}
if (vectors.length !== documents.length) {
throw new Error(`Vectors and metadata must have the same length`);
}
if (!vectors.every((v) => v.length === this.numDimensions)) {
throw new Error(`Vectors must have the same length as the number of dimensions (${this.numDimensions})`);
}
vectors.forEach((item, idx) => {
const doc = documents[idx];
this.docstore.push({ embeddings: item, document: doc });
});
const embeddings = this.docstore.map((item, idx) => ({
id: String(idx),
embeddings: item.embeddings,
title: "",
url: "",
}));
this.client.index({ embeddings });
}
/**
* Searches for vectors in the Voy database that are similar to the
* provided query vector.
* @param query The query vector.
* @param k The number of similar vectors to return.
* @returns A promise that resolves with an array of tuples, each containing a `Document` instance and a similarity score.
*/
async similaritySearchVectorWithScore(query, k) {
if (this.numDimensions === null) {
throw new Error("There aren't any elements in the index yet.");
}
if (query.length !== this.numDimensions) {
throw new Error(`Query vector must have the same length as the number of dimensions (${this.numDimensions})`);
}
const itemsToQuery = Math.min(this.docstore.length, k);
if (itemsToQuery > this.docstore.length) {
console.warn(`k (${k}) is greater than the number of elements in the index (${this.docstore.length}), setting k to ${itemsToQuery}`);
}
const results = this.client.search(new Float32Array(query), itemsToQuery);
return results.neighbors.map(({ id }, idx) => [this.docstore[parseInt(id, 10)].document, idx]);
}
/**
* Method to delete data from the Voy index. It can delete data based
* on specific IDs or a filter.
* @param params Object that includes either an array of IDs or a filter for the data to be deleted.
* @returns Promise that resolves when the deletion is complete.
*/
async delete(params) {
if (params.deleteAll === true) {
await this.client.clear();
}
else {
throw new Error(`You must provide a "deleteAll" parameter.`);
}
}
/**
* Creates a new `VoyVectorStore` instance from an array of text strings. The text
* strings are converted to `Document` instances and added to the Voy
* database.
* @param texts An array of text strings.
* @param metadatas An array of metadata objects or a single metadata object. If an array is provided, it must have the same length as the `texts` array.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param client An instance of Voy client to use in the underlying operations.
* @returns A promise that resolves with a new `VoyVectorStore` instance.
*/
static async fromTexts(texts, metadatas, embeddings, client) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return VoyVectorStore.fromDocuments(docs, embeddings, client);
}
/**
* Creates a new `VoyVectorStore` instance from an array of `Document` instances.
* The documents are added to the Voy database.
* @param docs An array of `Document` instances.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param client An instance of Voy client to use in the underlying operations.
* @returns A promise that resolves with a new `VoyVectorStore` instance.
*/
static async fromDocuments(docs, embeddings, client) {
const instance = new VoyVectorStore(client, embeddings);
await instance.addDocuments(docs);
return instance;
}
}