agsamantha/node_modules/@langchain/community/dist/vectorstores/zep.d.ts

147 lines
7.3 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { DocumentCollection, ZepClient } from "@getzep/zep-js";
import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { Document } from "@langchain/core/documents";
import { Callbacks } from "@langchain/core/callbacks/manager";
/**
* Interface for the arguments required to initialize a ZepVectorStore
* instance.
*/
export interface IZepArgs {
collection: DocumentCollection;
}
/**
* Interface for the configuration options for a ZepVectorStore instance.
*/
export interface IZepConfig {
apiUrl: string;
apiKey?: string;
collectionName: string;
description?: string;
metadata?: Record<string, never>;
embeddingDimensions?: number;
isAutoEmbedded?: boolean;
}
/**
* Interface for the parameters required to delete documents from a
* ZepVectorStore instance.
*/
export interface IZepDeleteParams {
uuids: string[];
}
/**
* ZepVectorStore is a VectorStore implementation that uses the Zep long-term memory store as a backend.
*
* If the collection does not exist, it will be created automatically.
*
* Requires `zep-js` to be installed:
* ```bash
* npm install @getzep/zep-js
* ```
*
* @property {ZepClient} client - The ZepClient instance used to interact with Zep's API.
* @property {Promise<void>} initPromise - A promise that resolves when the collection is initialized.
* @property {DocumentCollection} collection - The Zep document collection.
*/
export declare class ZepVectorStore extends VectorStore {
client: ZepClient;
collection: DocumentCollection;
private initPromise;
private autoEmbed;
constructor(embeddings: EmbeddingsInterface, args: IZepConfig);
/**
* Initializes the document collection. If the collection does not exist, it creates a new one.
*
* @param {IZepConfig} args - The configuration object for the Zep API.
*/
private initCollection;
/**
* Creates a new document collection.
*
* @param {IZepConfig} args - The configuration object for the Zep API.
*/
private createCollection;
/**
* Adds vectors and corresponding documents to the collection.
*
* @param {number[][]} vectors - The vectors to add.
* @param {Document[]} documents - The corresponding documents to add.
* @returns {Promise<string[]>} - A promise that resolves with the UUIDs of the added documents.
*/
addVectors(vectors: number[][], documents: Document[]): Promise<string[]>;
/**
* Adds documents to the collection. The documents are first embedded into vectors
* using the provided embedding model.
*
* @param {Document[]} documents - The documents to add.
* @returns {Promise<string[]>} - A promise that resolves with the UUIDs of the added documents.
*/
addDocuments(documents: Document[]): Promise<string[]>;
_vectorstoreType(): string;
/**
* Deletes documents from the collection.
*
* @param {IZepDeleteParams} params - The list of Zep document UUIDs to delete.
* @returns {Promise<void>}
*/
delete(params: IZepDeleteParams): Promise<void>;
/**
* Performs a similarity search in the collection and returns the results with their scores.
*
* @param {number[]} query - The query vector.
* @param {number} k - The number of results to return.
* @param {Record<string, unknown>} filter - The filter to apply to the search. Zep only supports Record<string, unknown> as filter.
* @returns {Promise<[Document, number][]>} - A promise that resolves with the search results and their scores.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: Record<string, unknown> | undefined): Promise<[Document, number][]>;
_similaritySearchWithScore(query: string, k: number, filter?: Record<string, unknown> | undefined): Promise<[Document, number][]>;
similaritySearchWithScore(query: string, k?: number, filter?: Record<string, unknown> | undefined, _callbacks?: undefined): Promise<[Document, number][]>;
/**
* Performs a similarity search on the Zep collection.
*
* @param {string} query - The query string to search for.
* @param {number} [k=4] - The number of results to return. Defaults to 4.
* @param {this["FilterType"] | undefined} [filter=undefined] - An optional set of JSONPath filters to apply to the search.
* @param {Callbacks | undefined} [_callbacks=undefined] - Optional callbacks. Currently not implemented.
* @returns {Promise<Document[]>} - A promise that resolves to an array of Documents that are similar to the query.
*
* @async
*/
similaritySearch(query: string, k?: number, filter?: this["FilterType"] | undefined, _callbacks?: Callbacks | undefined): Promise<Document[]>;
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param options
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK=20- Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda=0.5 - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {Record<string, any>} options.filter - Optional Zep JSONPath query to pre-filter on document metadata field
*
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
*/
maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
/**
* Creates a new ZepVectorStore instance from an array of texts. Each text is converted into a Document and added to the collection.
*
* @param {string[]} texts - The texts to convert into Documents.
* @param {object[] | object} metadatas - The metadata to associate with each Document. If an array is provided, each element is associated with the corresponding Document. If an object is provided, it is associated with all Documents.
* @param {Embeddings} embeddings - The embeddings to use for vectorizing the texts.
* @param {IZepConfig} zepConfig - The configuration object for the Zep API.
* @returns {Promise<ZepVectorStore>} - A promise that resolves with the new ZepVectorStore instance.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, zepConfig: IZepConfig): Promise<ZepVectorStore>;
/**
* Creates a new ZepVectorStore instance from an array of Documents. Each Document is added to a Zep collection.
*
* @param {Document[]} docs - The Documents to add.
* @param {Embeddings} embeddings - The embeddings to use for vectorizing the Document contents.
* @param {IZepConfig} zepConfig - The configuration object for the Zep API.
* @returns {Promise<ZepVectorStore>} - A promise that resolves with the new ZepVectorStore instance.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, zepConfig: IZepConfig): Promise<ZepVectorStore>;
}