agsamantha/node_modules/@langchain/community/dist/embeddings/cloudflare_workersai.js

74 lines
2.6 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { Ai } from "@cloudflare/ai";
import { Embeddings } from "@langchain/core/embeddings";
import { chunkArray } from "@langchain/core/utils/chunk_array";
/** @deprecated Install and import from "@langchain/cloudflare" instead. */
export class CloudflareWorkersAIEmbeddings extends Embeddings {
constructor(fields) {
super(fields);
Object.defineProperty(this, "modelName", {
enumerable: true,
configurable: true,
writable: true,
value: "@cf/baai/bge-base-en-v1.5"
});
Object.defineProperty(this, "model", {
enumerable: true,
configurable: true,
writable: true,
value: "@cf/baai/bge-base-en-v1.5"
});
Object.defineProperty(this, "batchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 50
});
Object.defineProperty(this, "stripNewLines", {
enumerable: true,
configurable: true,
writable: true,
value: true
});
Object.defineProperty(this, "ai", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
if (!fields.binding) {
throw new Error("Must supply a Workers AI binding, eg { binding: env.AI }");
}
this.ai = new Ai(fields.binding);
this.modelName = fields?.model ?? fields.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields.stripNewLines ?? this.stripNewLines;
}
async embedDocuments(texts) {
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text) {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, " ") : text,
]);
return data[0];
}
async runEmbedding(texts) {
return this.caller.call(async () => {
const response = await this.ai.run(this.model, {
text: texts,
});
return response.data;
});
}
}