agsamantha/node_modules/@langchain/community/dist/vectorstores/neon.cjs

311 lines
12 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.NeonPostgres = void 0;
const serverless_1 = require("@neondatabase/serverless");
const vectorstores_1 = require("@langchain/core/vectorstores");
const documents_1 = require("@langchain/core/documents");
const env_1 = require("@langchain/core/utils/env");
/**
* Class that provides an interface to a Neon Postgres database. It
* extends the `VectorStore` base class and implements methods for adding
* documents and vectors, performing similarity searches, and ensuring the
* existence of a table in the database.
*/
class NeonPostgres extends vectorstores_1.VectorStore {
_vectorstoreType() {
return "neon-postgres";
}
constructor(embeddings, config) {
super(embeddings, config);
Object.defineProperty(this, "tableName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "idColumnName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "vectorColumnName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "contentColumnName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "metadataColumnName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "filter", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "_verbose", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "neonConnectionString", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this._verbose =
(0, env_1.getEnvironmentVariable)("LANGCHAIN_VERBOSE") === "true" ??
!!config.verbose;
this.neonConnectionString = config.connectionString;
this.tableName = config.tableName ?? "vectorstore_documents";
this.filter = config.filter;
this.vectorColumnName = config.columns?.vectorColumnName ?? "embedding";
this.contentColumnName = config.columns?.contentColumnName ?? "text";
this.idColumnName = config.columns?.idColumnName ?? "id";
this.metadataColumnName = config.columns?.metadataColumnName ?? "metadata";
}
/**
* Static method to create a new `NeonPostgres` instance from a
* connection. It creates a table if one does not exist.
*
* @param embeddings - Embeddings instance.
* @param fields - `NeonPostgresArgs` instance.
* @returns A new instance of `NeonPostgres`.
*/
static async initialize(embeddings, config) {
const neonVectorStore = new NeonPostgres(embeddings, config);
await neonVectorStore.ensureTableInDatabase();
return neonVectorStore;
}
/**
* Constructs the SQL query for inserting rows into the specified table.
*
* @param rows - The rows of data to be inserted, consisting of values and records.
* @param chunkIndex - The starting index for generating query placeholders based on chunk positioning.
* @returns The complete SQL INSERT INTO query string.
*/
async runInsertQuery(
// eslint-disable-next-line @typescript-eslint/no-explicit-any
rows, useIdColumn) {
const placeholders = rows.map((row, index) => {
const base = index * row.length;
return `(${row.map((_, j) => `$${base + 1 + j}`)})`;
});
const queryString = `
INSERT INTO ${this.tableName} (
${useIdColumn ? `${this.idColumnName},` : ""}
${this.contentColumnName},
${this.vectorColumnName},
${this.metadataColumnName}
) VALUES ${placeholders.join(", ")}
ON CONFLICT (${this.idColumnName})
DO UPDATE
SET
${this.contentColumnName} = EXCLUDED.${this.contentColumnName},
${this.vectorColumnName} = EXCLUDED.${this.vectorColumnName},
${this.metadataColumnName} = EXCLUDED.${this.metadataColumnName}
RETURNING ${this.idColumnName}
`;
const flatValues = rows.flat();
const sql = (0, serverless_1.neon)(this.neonConnectionString);
return await sql(queryString, flatValues);
}
/**
* Method to add vectors to the vector store. It converts the vectors into
* rows and inserts them into the database.
*
* @param vectors - Array of vectors.
* @param documents - Array of `Document` instances.
* @param options - Optional arguments for adding documents
* @returns Promise that resolves when the vectors have been added.
*/
async addVectors(vectors, documents, options) {
if (options?.ids !== undefined && options?.ids.length !== vectors.length) {
throw new Error(`If provided, the length of "ids" must be the same as the number of vectors.`);
}
const rows = vectors.map((embedding, idx) => {
const embeddingString = `[${embedding.join(",")}]`;
const row = [
documents[idx].pageContent,
embeddingString,
documents[idx].metadata,
];
if (options?.ids) {
return [options.ids[idx], ...row];
}
return row;
});
const chunkSize = 500;
const ids = [];
for (let i = 0; i < rows.length; i += chunkSize) {
const chunk = rows.slice(i, i + chunkSize);
try {
const result = await this.runInsertQuery(chunk, options?.ids !== undefined);
ids.push(...result.map((row) => row[this.idColumnName]));
}
catch (e) {
console.error(e);
throw new Error(`Error inserting: ${e.message}`);
}
}
return ids;
}
/**
* Method to perform a similarity search in the vector store. It returns
* the `k` most similar documents to the query vector, along with their
* similarity scores.
*
* @param query - Query vector.
* @param k - Number of most similar documents to return.
* @param filter - Optional filter to apply to the search.
* @returns Promise that resolves with an array of tuples, each containing a `Document` and its similarity score.
*/
async similaritySearchVectorWithScore(query, k, filter) {
const embeddingString = `[${query.join(",")}]`;
const _filter = filter ?? {};
const whereClauses = [];
const parameters = [embeddingString, k];
let paramCount = parameters.length;
// The vector to query with, and the num of results are the first
// two parameters. The rest of the parameters are the filter values
for (const [key, value] of Object.entries(_filter)) {
if (typeof value === "object" && value !== null) {
const currentParamCount = paramCount;
const placeholders = value.in
.map((_, index) => `$${currentParamCount + index + 1}`)
.join(",");
whereClauses.push(`${this.metadataColumnName}->>'${key}' IN (${placeholders})`);
parameters.push(...value.in);
paramCount += value.in.length;
}
else {
paramCount += 1;
whereClauses.push(`${this.metadataColumnName}->>'${key}' = $${paramCount}`);
parameters.push(value);
}
}
const whereClause = whereClauses.length
? `WHERE ${whereClauses.join(" AND ")}`
: "";
const queryString = `
SELECT *, ${this.vectorColumnName} <=> $1 as "_distance"
FROM ${this.tableName}
${whereClause}
ORDER BY "_distance" ASC
LIMIT $2;`;
const sql = (0, serverless_1.neon)(this.neonConnectionString);
const documents = await sql(queryString, parameters);
const results = [];
for (const doc of documents) {
if (doc._distance != null && doc[this.contentColumnName] != null) {
const document = new documents_1.Document({
pageContent: doc[this.contentColumnName],
metadata: doc[this.metadataColumnName],
});
results.push([document, doc._distance]);
}
}
return results;
}
/**
* Method to add documents to the vector store. It converts the documents into
* vectors, and adds them to the store.
*
* @param documents - Array of `Document` instances.
* @param options - Optional arguments for adding documents
* @returns Promise that resolves when the documents have been added.
*/
async addDocuments(documents, options) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
}
/**
* Method to delete documents from the vector store. It deletes the
* documents that match the provided ids.
*
* @param ids - Array of document ids.
* @param deleteAll - Boolean to delete all documents.
* @returns Promise that resolves when the documents have been deleted.
*/
async delete(params) {
const sql = (0, serverless_1.neon)(this.neonConnectionString);
if (params.ids !== undefined) {
await sql(`DELETE FROM ${this.tableName}
WHERE ${this.idColumnName}
IN (${params.ids.map((_, idx) => `$${idx + 1}`)})`, params.ids);
}
else if (params.deleteAll) {
await sql(`TRUNCATE TABLE ${this.tableName}`);
}
}
/**
* Method to ensure the existence of the table to store vectors in
* the database. It creates the table if it does not already exist.
*
* @returns Promise that resolves when the table has been ensured.
*/
async ensureTableInDatabase() {
const sql = (0, serverless_1.neon)(this.neonConnectionString);
await sql(`CREATE EXTENSION IF NOT EXISTS vector;`);
await sql(`CREATE EXTENSION IF NOT EXISTS "uuid-ossp";`);
await sql(`
CREATE TABLE IF NOT EXISTS ${this.tableName} (
${this.idColumnName} uuid NOT NULL DEFAULT uuid_generate_v4() PRIMARY KEY,
${this.contentColumnName} text,
${this.metadataColumnName} jsonb,
${this.vectorColumnName} vector
);
`);
}
/**
* Static method to create a new `NeonPostgres` instance from an
* array of texts and their metadata. It converts the texts into
* `Document` instances and adds them to the store.
*
* @param texts - Array of texts.
* @param metadatas - Array of metadata objects or a single metadata object.
* @param embeddings - Embeddings instance.
* @param dbConfig - `NeonPostgresArgs` instance.
* @returns Promise that resolves with a new instance of `NeonPostgresArgs`.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new documents_1.Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return this.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Static method to create a new `NeonPostgres` instance from an
* array of `Document` instances. It adds the documents to the store.
*
* @param docs - Array of `Document` instances.
* @param embeddings - Embeddings instance.
* @param dbConfig - `NeonPostgreseArgs` instance.
* @returns Promise that resolves with a new instance of `NeonPostgres`.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = await this.initialize(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
}
exports.NeonPostgres = NeonPostgres;