agsamantha/node_modules/@langchain/community/dist/retrievers/bm25.js

53 lines
1.8 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { BaseRetriever } from "@langchain/core/retrievers";
import { BM25 } from "../utils/@furkantoprak/bm25/BM25.js";
/**
* A retriever that uses the BM25 algorithm to rank documents based on their
* similarity to a query. It uses the "okapibm25" package for BM25 scoring.
* The k parameter determines the number of documents to return for each query.
*/
export class BM25Retriever extends BaseRetriever {
static lc_name() {
return "BM25Retriever";
}
static fromDocuments(documents, options) {
return new this({ ...options, docs: documents });
}
constructor(options) {
super(options);
Object.defineProperty(this, "lc_namespace", {
enumerable: true,
configurable: true,
writable: true,
value: ["langchain", "retrievers", "bm25_retriever"]
});
Object.defineProperty(this, "docs", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "k", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.docs = options.docs;
this.k = options.k;
}
preprocessFunc(text) {
return text.toLowerCase().split(/\s+/);
}
async _getRelevantDocuments(query) {
const processedQuery = this.preprocessFunc(query);
const documents = this.docs.map((doc) => doc.pageContent);
const scores = BM25(documents, processedQuery);
const scoredDocs = this.docs.map((doc, index) => ({
document: doc,
score: scores[index],
}));
scoredDocs.sort((a, b) => b.score - a.score);
return scoredDocs.slice(0, this.k).map((item) => item.document);
}
}