agsamantha/node_modules/@langchain/community/dist/utils/bedrock/index.cjs

360 lines
15 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.BedrockLLMInputOutputAdapter = void 0;
const messages_1 = require("@langchain/core/messages");
const outputs_1 = require("@langchain/core/outputs");
const anthropic_js_1 = require("./anthropic.cjs");
/**
* format messages for Cohere Command-R and CommandR+ via AWS Bedrock.
*
* @param messages messages The base messages to format as a prompt.
*
* @returns The formatted prompt for Cohere.
*
* `system`: user system prompts. Overrides the default preamble for search query generation. Has no effect on tool use generations.\
* `message`: (Required) Text input for the model to respond to.\
* `chatHistory`: A list of previous messages between the user and the model, meant to give the model conversational context for responding to the user's message.\
* The following are required fields.
* - `role` - The role for the message. Valid values are USER or CHATBOT.\
* - `message` Text contents of the message.\
*
* The following is example JSON for the chat_history field.\
* "chat_history": [
* {"role": "USER", "message": "Who discovered gravity?"},
* {"role": "CHATBOT", "message": "The man who is widely credited with discovering gravity is Sir Isaac Newton"}]\
*
* docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html
*/
function formatMessagesForCohere(messages) {
const systemMessages = messages.filter((system) => system._getType() === "system");
const system = systemMessages
.filter((m) => typeof m.content === "string")
.map((m) => m.content)
.join("\n\n");
const conversationMessages = messages.filter((message) => message._getType() !== "system");
const questionContent = conversationMessages.slice(-1);
if (!questionContent.length || questionContent[0]._getType() !== "human") {
throw new Error("question message content must be a human message.");
}
if (typeof questionContent[0].content !== "string") {
throw new Error("question message content must be a string.");
}
const formattedMessage = questionContent[0].content;
const formattedChatHistories = conversationMessages
.slice(0, -1)
.map((message) => {
let role;
switch (message._getType()) {
case "human":
role = "USER";
break;
case "ai":
role = "CHATBOT";
break;
case "system":
throw new Error("chat_history can not include system prompts.");
default:
throw new Error(`Message type "${message._getType()}" is not supported.`);
}
if (typeof message.content !== "string") {
throw new Error("message content must be a string.");
}
return {
role,
message: message.content,
};
});
return {
chatHistory: formattedChatHistories,
message: formattedMessage,
system,
};
}
/**
* A helper class used within the `Bedrock` class. It is responsible for
* preparing the input and output for the Bedrock service. It formats the
* input prompt based on the provider (e.g., "anthropic", "ai21",
* "amazon") and extracts the generated text from the service response.
*/
class BedrockLLMInputOutputAdapter {
/** Adapter class to prepare the inputs from Langchain to a format
that LLM model expects. Also, provides a helper function to extract
the generated text from the model response. */
static prepareInput(provider, prompt, maxTokens = 50, temperature = 0, stopSequences = undefined, modelKwargs = {}, bedrockMethod = "invoke", guardrailConfig = undefined) {
const inputBody = {};
if (provider === "anthropic") {
inputBody.prompt = prompt;
inputBody.max_tokens_to_sample = maxTokens;
inputBody.temperature = temperature;
inputBody.stop_sequences = stopSequences;
}
else if (provider === "ai21") {
inputBody.prompt = prompt;
inputBody.maxTokens = maxTokens;
inputBody.temperature = temperature;
inputBody.stopSequences = stopSequences;
}
else if (provider === "meta") {
inputBody.prompt = prompt;
inputBody.max_gen_len = maxTokens;
inputBody.temperature = temperature;
}
else if (provider === "amazon") {
inputBody.inputText = prompt;
inputBody.textGenerationConfig = {
maxTokenCount: maxTokens,
temperature,
};
}
else if (provider === "cohere") {
inputBody.prompt = prompt;
inputBody.max_tokens = maxTokens;
inputBody.temperature = temperature;
inputBody.stop_sequences = stopSequences;
if (bedrockMethod === "invoke-with-response-stream") {
inputBody.stream = true;
}
}
else if (provider === "mistral") {
inputBody.prompt = prompt;
inputBody.max_tokens = maxTokens;
inputBody.temperature = temperature;
inputBody.stop = stopSequences;
}
if (guardrailConfig &&
guardrailConfig.tagSuffix &&
guardrailConfig.streamProcessingMode) {
inputBody["amazon-bedrock-guardrailConfig"] = guardrailConfig;
}
return { ...inputBody, ...modelKwargs };
}
static prepareMessagesInput(provider, messages, maxTokens = 1024, temperature = 0, stopSequences = undefined, modelKwargs = {}, guardrailConfig = undefined, tools = []) {
const inputBody = {};
if (provider === "anthropic") {
const { system, messages: formattedMessages } = (0, anthropic_js_1.formatMessagesForAnthropic)(messages);
if (system !== undefined) {
inputBody.system = system;
}
inputBody.anthropic_version = "bedrock-2023-05-31";
inputBody.messages = formattedMessages;
inputBody.max_tokens = maxTokens;
inputBody.temperature = temperature;
inputBody.stop_sequences = stopSequences;
if (tools.length > 0) {
inputBody.tools = tools;
}
return { ...inputBody, ...modelKwargs };
}
else if (provider === "cohere") {
const { system, message: formattedMessage, chatHistory: formattedChatHistories, } = formatMessagesForCohere(messages);
if (system !== undefined && system.length > 0) {
inputBody.preamble = system;
}
inputBody.message = formattedMessage;
inputBody.chat_history = formattedChatHistories;
inputBody.max_tokens = maxTokens;
inputBody.temperature = temperature;
inputBody.stop_sequences = stopSequences;
}
else {
throw new Error("The messages API is currently only supported by Anthropic or Cohere");
}
if (guardrailConfig &&
guardrailConfig.tagSuffix &&
guardrailConfig.streamProcessingMode) {
inputBody["amazon-bedrock-guardrailConfig"] = guardrailConfig;
}
return { ...inputBody, ...modelKwargs };
}
/**
* Extracts the generated text from the service response.
* @param provider The provider name.
* @param responseBody The response body from the service.
* @returns The generated text.
*/
// eslint-disable-next-line @typescript-eslint/no-explicit-any
static prepareOutput(provider, responseBody) {
if (provider === "anthropic") {
return responseBody.completion;
}
else if (provider === "ai21") {
return responseBody?.completions?.[0]?.data?.text ?? "";
}
else if (provider === "cohere") {
return responseBody?.generations?.[0]?.text ?? responseBody?.text ?? "";
}
else if (provider === "meta") {
return responseBody.generation;
}
else if (provider === "mistral") {
return responseBody?.outputs?.[0]?.text;
}
// I haven't been able to get a response with more than one result in it.
return responseBody.results?.[0]?.outputText;
}
static prepareMessagesOutput(provider,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
response, fields) {
const responseBody = response ?? {};
if (provider === "anthropic") {
if (responseBody.type === "message") {
return parseMessage(responseBody);
}
else if (responseBody.type === "message_start") {
return parseMessage(responseBody.message, true);
}
const chunk = (0, anthropic_js_1._makeMessageChunkFromAnthropicEvent)(response, {
coerceContentToString: fields?.coerceContentToString,
});
if (!chunk)
return undefined;
const newToolCallChunk = (0, anthropic_js_1.extractToolCallChunk)(chunk);
let toolUseContent;
const extractedContent = (0, anthropic_js_1.extractToolUseContent)(chunk, undefined);
if (extractedContent) {
toolUseContent = extractedContent.toolUseContent;
}
// Filter partial `tool_use` content, and only add `tool_use` chunks if complete JSON available.
const chunkContent = Array.isArray(chunk.content)
? chunk.content.filter((c) => c.type !== "tool_use")
: chunk.content;
if (Array.isArray(chunkContent) && toolUseContent) {
chunkContent.push(toolUseContent);
}
// Extract the text content token for text field and runManager.
const token = (0, anthropic_js_1.extractToken)(chunk);
return new outputs_1.ChatGenerationChunk({
message: new messages_1.AIMessageChunk({
content: chunkContent,
additional_kwargs: chunk.additional_kwargs,
tool_call_chunks: newToolCallChunk ? [newToolCallChunk] : undefined,
usage_metadata: chunk.usage_metadata,
response_metadata: chunk.response_metadata,
}),
// Backwards compatibility
generationInfo: { ...chunk.response_metadata },
text: token ?? "",
});
}
else if (provider === "cohere") {
if (responseBody.event_type === "stream-start") {
return parseMessageCohere(responseBody.message, true);
}
else if (responseBody.event_type === "text-generation" &&
typeof responseBody?.text === "string") {
return new outputs_1.ChatGenerationChunk({
message: new messages_1.AIMessageChunk({
content: responseBody.text,
}),
text: responseBody.text,
});
}
else if (responseBody.event_type === "search-queries-generation") {
return parseMessageCohere(responseBody);
}
else if (responseBody.event_type === "stream-end" &&
responseBody.response !== undefined &&
responseBody["amazon-bedrock-invocationMetrics"] !== undefined) {
return new outputs_1.ChatGenerationChunk({
message: new messages_1.AIMessageChunk({ content: "" }),
text: "",
generationInfo: {
response: responseBody.response,
"amazon-bedrock-invocationMetrics": responseBody["amazon-bedrock-invocationMetrics"],
},
});
}
else {
if (responseBody.finish_reason === "COMPLETE" ||
responseBody.finish_reason === "MAX_TOKENS") {
return parseMessageCohere(responseBody);
}
else {
return undefined;
}
}
}
else {
throw new Error("The messages API is currently only supported by Anthropic or Cohere.");
}
}
}
exports.BedrockLLMInputOutputAdapter = BedrockLLMInputOutputAdapter;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
function parseMessage(responseBody, asChunk) {
const { content, id, ...generationInfo } = responseBody;
let parsedContent;
if (Array.isArray(content) &&
content.length === 1 &&
content[0].type === "text") {
parsedContent = content[0].text;
}
else if (Array.isArray(content) && content.length === 0) {
parsedContent = "";
}
else {
parsedContent = content;
}
if (asChunk) {
return new outputs_1.ChatGenerationChunk({
message: new messages_1.AIMessageChunk({
content: parsedContent,
additional_kwargs: { id },
}),
text: typeof parsedContent === "string" ? parsedContent : "",
generationInfo,
});
}
else {
// TODO: we are throwing away here the text response, as the interface of this method returns only one
const toolCalls = (0, anthropic_js_1.extractToolCalls)(responseBody.content);
if (toolCalls.length > 0) {
return {
message: new messages_1.AIMessage({
content: "",
additional_kwargs: { id },
tool_calls: toolCalls,
}),
text: typeof parsedContent === "string" ? parsedContent : "",
generationInfo,
};
}
return {
message: new messages_1.AIMessage({
content: parsedContent,
additional_kwargs: { id },
tool_calls: toolCalls,
}),
text: typeof parsedContent === "string" ? parsedContent : "",
generationInfo,
};
}
}
function parseMessageCohere(
// eslint-disable-next-line @typescript-eslint/no-explicit-any
responseBody, asChunk) {
const { text, ...generationInfo } = responseBody;
let parsedContent = text;
if (typeof text !== "string") {
parsedContent = "";
}
if (asChunk) {
return new outputs_1.ChatGenerationChunk({
message: new messages_1.AIMessageChunk({
content: parsedContent,
}),
text: parsedContent,
generationInfo,
});
}
else {
return {
message: new messages_1.AIMessage({
content: parsedContent,
}),
text: parsedContent,
generationInfo,
};
}
}