agsamantha/node_modules/@langchain/community/dist/vectorstores/astradb.d.ts

116 lines
5.3 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { CreateCollectionOptions } from "@datastax/astra-db-ts";
import { AsyncCaller, AsyncCallerParams } from "@langchain/core/utils/async_caller";
import { Document } from "@langchain/core/documents";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores";
export type CollectionFilter = Record<string, unknown>;
export interface AstraLibArgs extends AsyncCallerParams {
token: string;
endpoint: string;
collection: string;
namespace?: string;
idKey?: string;
contentKey?: string;
skipCollectionProvisioning?: boolean;
collectionOptions?: CreateCollectionOptions<any>;
batchSize?: number;
}
export type AstraDeleteParams = {
ids: string[];
};
export declare class AstraDBVectorStore extends VectorStore {
FilterType: CollectionFilter;
private astraDBClient;
private collectionName;
private collection;
private collectionOptions;
private readonly idKey;
private readonly contentKey;
caller: AsyncCaller;
private readonly skipCollectionProvisioning;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: AstraLibArgs);
private static applyCollectionOptionsDefaults;
/**
* Create a new collection in your Astra DB vector database and then connects to it.
* If the collection already exists, it will connect to it as well.
*
* @returns Promise that resolves if connected to the collection.
*/
initialize(): Promise<void>;
/**
* Method to save vectors to AstraDB.
*
* @param vectors Vectors to save.
* @param documents The documents associated with the vectors.
* @returns Promise that resolves when the vectors have been added.
*/
addVectors(vectors: number[][], documents: Document[], options?: string[]): Promise<void>;
/**
* Method that adds documents to AstraDB.
*
* @param documents Array of documents to add to AstraDB.
* @param options Optional ids for the documents.
* @returns Promise that resolves the documents have been added.
*/
addDocuments(documents: Document[], options?: string[]): Promise<void>;
/**
* Method that deletes documents from AstraDB.
*
* @param params AstraDeleteParameters for the delete.
* @returns Promise that resolves when the documents have been deleted.
*/
delete(params: AstraDeleteParams): Promise<void>;
/**
* Method that performs a similarity search in AstraDB and returns and similarity scores.
*
* @param query Query vector for the similarity search.
* @param k Number of top results to return.
* @param filter Optional filter to apply to the search.
* @returns Promise that resolves with an array of documents and their scores.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: CollectionFilter): Promise<[Document, number][]>;
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK - Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {CollectionFilter} options.filter - Optional filter
*
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
*/
maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
/**
* Static method to create an instance of AstraDBVectorStore from texts.
*
* @param texts The texts to use.
* @param metadatas The metadata associated with the texts.
* @param embeddings The embeddings to use.
* @param dbConfig The arguments for the AstraDBVectorStore.
* @returns Promise that resolves with a new instance of AstraDBVectorStore.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: AstraLibArgs): Promise<AstraDBVectorStore>;
/**
* Static method to create an instance of AstraDBVectorStore from documents.
*
* @param docs The Documents to use.
* @param embeddings The embeddings to use.
* @param dbConfig The arguments for the AstraDBVectorStore.
* @returns Promise that resolves with a new instance of AstraDBVectorStore.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: AstraLibArgs): Promise<AstraDBVectorStore>;
/**
* Static method to create an instance of AstraDBVectorStore from an existing index.
*
* @param embeddings The embeddings to use.
* @param dbConfig The arguments for the AstraDBVectorStore.
* @returns Promise that resolves with a new instance of AstraDBVectorStore.
*/
static fromExistingIndex(embeddings: EmbeddingsInterface, dbConfig: AstraLibArgs): Promise<AstraDBVectorStore>;
}