agsamantha/node_modules/@langchain/community/dist/vectorstores/turbopuffer.d.ts

55 lines
2.3 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { type DocumentInterface } from "@langchain/core/documents";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { AsyncCaller, AsyncCallerParams } from "@langchain/core/utils/async_caller";
import { VectorStore } from "@langchain/core/vectorstores";
export type TurbopufferDistanceMetric = "cosine_distance" | "euclidean_squared";
export type TurbopufferFilterType = Record<string, Array<[string, string[] | string]>>;
export interface TurbopufferParams extends AsyncCallerParams {
apiKey?: string;
namespace?: string;
distanceMetric?: TurbopufferDistanceMetric;
apiUrl?: string;
batchSize?: number;
}
export interface TurbopufferQueryResult {
dist: number;
id: number;
vector?: number[];
attributes: Record<string, string>;
}
export declare class TurbopufferVectorStore extends VectorStore {
FilterType: TurbopufferFilterType;
get lc_secrets(): {
[key: string]: string;
};
get lc_aliases(): {
[key: string]: string;
};
static lc_name(): string;
protected distanceMetric: TurbopufferDistanceMetric;
protected apiKey: string;
protected namespace: string;
protected apiUrl: string;
caller: AsyncCaller;
batchSize: number;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: TurbopufferParams);
defaultHeaders(): {
Authorization: string;
"Content-Type": string;
};
callWithRetry(fetchUrl: string, stringifiedBody: string | undefined, method?: string): Promise<any>;
addVectors(vectors: number[][], documents: DocumentInterface[], options?: {
ids?: string[];
}): Promise<string[]>;
delete(params: {
deleteIndex?: boolean;
}): Promise<void>;
addDocuments(documents: DocumentInterface[], options?: {
ids?: string[];
}): Promise<string[]>;
protected queryVectors(query: number[], k: number, includeVector?: boolean, filter?: this["FilterType"]): Promise<TurbopufferQueryResult[]>;
similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[DocumentInterface, number][]>;
static fromDocuments(docs: DocumentInterface[], embeddings: EmbeddingsInterface, dbConfig: TurbopufferParams): Promise<TurbopufferVectorStore>;
}