agsamantha/node_modules/@langchain/community/dist/chat_models/bedrock/web.cjs

908 lines
32 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.ChatBedrock = exports.BedrockChat = exports.convertMessagesToPrompt = exports.convertMessagesToPromptAnthropic = void 0;
const signature_v4_1 = require("@smithy/signature-v4");
const protocol_http_1 = require("@smithy/protocol-http");
const eventstream_codec_1 = require("@smithy/eventstream-codec");
const util_utf8_1 = require("@smithy/util-utf8");
const sha256_js_1 = require("@aws-crypto/sha256-js");
const chat_models_1 = require("@langchain/core/language_models/chat_models");
const base_1 = require("@langchain/core/language_models/base");
const env_1 = require("@langchain/core/utils/env");
const messages_1 = require("@langchain/core/messages");
const outputs_1 = require("@langchain/core/outputs");
const function_calling_1 = require("@langchain/core/utils/function_calling");
const zod_to_json_schema_1 = require("zod-to-json-schema");
const index_js_1 = require("../../utils/bedrock/index.cjs");
const anthropic_js_1 = require("../../utils/bedrock/anthropic.cjs");
const AWS_REGIONS = [
"us",
"sa",
"me",
"il",
"eu",
"cn",
"ca",
"ap",
"af",
"us-gov",
];
const ALLOWED_MODEL_PROVIDERS = [
"ai21",
"anthropic",
"amazon",
"cohere",
"meta",
"mistral",
];
const PRELUDE_TOTAL_LENGTH_BYTES = 4;
function convertOneMessageToText(message, humanPrompt, aiPrompt) {
if (message._getType() === "human") {
return `${humanPrompt} ${message.content}`;
}
else if (message._getType() === "ai") {
return `${aiPrompt} ${message.content}`;
}
else if (message._getType() === "system") {
return `${humanPrompt} <admin>${message.content}</admin>`;
}
else if (message._getType() === "function") {
return `${humanPrompt} ${message.content}`;
}
else if (messages_1.ChatMessage.isInstance(message)) {
return `\n\n${message.role[0].toUpperCase() + message.role.slice(1)}: {message.content}`;
}
throw new Error(`Unknown role: ${message._getType()}`);
}
function convertMessagesToPromptAnthropic(messages, humanPrompt = "\n\nHuman:", aiPrompt = "\n\nAssistant:") {
const messagesCopy = [...messages];
if (messagesCopy.length === 0 ||
messagesCopy[messagesCopy.length - 1]._getType() !== "ai") {
messagesCopy.push(new messages_1.AIMessage({ content: "" }));
}
return messagesCopy
.map((message) => convertOneMessageToText(message, humanPrompt, aiPrompt))
.join("");
}
exports.convertMessagesToPromptAnthropic = convertMessagesToPromptAnthropic;
/**
* Function that converts an array of messages into a single string prompt
* that can be used as input for a chat model. It delegates the conversion
* logic to the appropriate provider-specific function.
* @param messages Array of messages to be converted.
* @param options Options to be used during the conversion.
* @returns A string prompt that can be used as input for a chat model.
*/
function convertMessagesToPrompt(messages, provider) {
if (provider === "anthropic") {
return convertMessagesToPromptAnthropic(messages);
}
throw new Error(`Provider ${provider} does not support chat.`);
}
exports.convertMessagesToPrompt = convertMessagesToPrompt;
function formatTools(tools) {
if (!tools || !tools.length) {
return [];
}
if (tools.every(function_calling_1.isLangChainTool)) {
return tools.map((tc) => ({
name: tc.name,
description: tc.description,
input_schema: (0, zod_to_json_schema_1.zodToJsonSchema)(tc.schema),
}));
}
if (tools.every(base_1.isOpenAITool)) {
return tools.map((tc) => ({
name: tc.function.name,
description: tc.function.description,
input_schema: tc.function.parameters,
}));
}
if (tools.every(anthropic_js_1.isAnthropicTool)) {
return tools;
}
if (tools.some(function_calling_1.isStructuredTool) ||
tools.some(base_1.isOpenAITool) ||
tools.some(anthropic_js_1.isAnthropicTool)) {
throw new Error("All tools passed to BedrockChat must be of the same type.");
}
throw new Error("Invalid tool format received.");
}
/**
* AWS Bedrock chat model integration.
*
* Setup:
* Install `@langchain/community` and set the following environment variables:
*
* ```bash
* npm install @langchain/openai
* export AWS_REGION="your-aws-region"
* export AWS_SECRET_ACCESS_KEY="your-aws-secret-access-key"
* export AWS_ACCESS_KEY_ID="your-aws-access-key-id"
* ```
*
* ## [Constructor args](/classes/langchain_community_chat_models_bedrock.BedrockChat.html#constructor)
*
* ## [Runtime args](/interfaces/langchain_community_chat_models_bedrock_web.BedrockChatCallOptions.html)
*
* Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
* They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
*
* ```typescript
* // When calling `.bind`, call options should be passed via the first argument
* const llmWithArgsBound = llm.bind({
* stop: ["\n"],
* tools: [...],
* });
*
* // When calling `.bindTools`, call options should be passed via the second argument
* const llmWithTools = llm.bindTools(
* [...],
* {
* stop: ["stop on this token!"],
* }
* );
* ```
*
* ## Examples
*
* <details open>
* <summary><strong>Instantiate</strong></summary>
*
* ```typescript
* import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
*
* const llm = new BedrockChat({
* region: process.env.AWS_REGION,
* maxRetries: 0,
* model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
* temperature: 0,
* maxTokens: undefined,
* // other params...
* });
*
* // You can also pass credentials in explicitly:
* const llmWithCredentials = new BedrockChat({
* region: process.env.BEDROCK_AWS_REGION,
* model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
* credentials: {
* secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!,
* accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!,
* },
* });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Invoking</strong></summary>
*
* ```typescript
* const input = `Translate "I love programming" into French.`;
*
* // Models also accept a list of chat messages or a formatted prompt
* const result = await llm.invoke(input);
* console.log(result);
* ```
*
* ```txt
* AIMessage {
* "content": "Here's the translation to French:\n\nJ'adore la programmation.",
* "additional_kwargs": {
* "id": "msg_bdrk_01HCZHa2mKbMZeTeHjLDd286"
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": "end_turn",
* "stop_sequence": null,
* "usage": {
* "input_tokens": 25,
* "output_tokens": 19
* }
* },
* "tool_calls": [],
* "invalid_tool_calls": []
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Streaming Chunks</strong></summary>
*
* ```typescript
* for await (const chunk of await llm.stream(input)) {
* console.log(chunk);
* }
* ```
*
* ```txt
* AIMessageChunk {
* "content": "",
* "additional_kwargs": {
* "id": "msg_bdrk_01RhFuGR9uJ2bj5GbdAma4y6"
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": null,
* "stop_sequence": null
* },
* }
* AIMessageChunk {
* "content": "J",
* }
* AIMessageChunk {
* "content": "'adore la",
* }
* AIMessageChunk {
* "content": " programmation.",
* }
* AIMessageChunk {
* "content": "",
* "additional_kwargs": {
* "stop_reason": "end_turn",
* "stop_sequence": null
* },
* }
* AIMessageChunk {
* "content": "",
* "response_metadata": {
* "amazon-bedrock-invocationMetrics": {
* "inputTokenCount": 25,
* "outputTokenCount": 11,
* "invocationLatency": 659,
* "firstByteLatency": 506
* }
* },
* "usage_metadata": {
* "input_tokens": 25,
* "output_tokens": 11,
* "total_tokens": 36
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Aggregate Streamed Chunks</strong></summary>
*
* ```typescript
* import { AIMessageChunk } from '@langchain/core/messages';
* import { concat } from '@langchain/core/utils/stream';
*
* const stream = await llm.stream(input);
* let full: AIMessageChunk | undefined;
* for await (const chunk of stream) {
* full = !full ? chunk : concat(full, chunk);
* }
* console.log(full);
* ```
*
* ```txt
* AIMessageChunk {
* "content": "J'adore la programmation.",
* "additional_kwargs": {
* "id": "msg_bdrk_017b6PuBybA51P5LZ9K6gZHm",
* "stop_reason": "end_turn",
* "stop_sequence": null
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": null,
* "stop_sequence": null,
* "amazon-bedrock-invocationMetrics": {
* "inputTokenCount": 25,
* "outputTokenCount": 11,
* "invocationLatency": 1181,
* "firstByteLatency": 1177
* }
* },
* "usage_metadata": {
* "input_tokens": 25,
* "output_tokens": 11,
* "total_tokens": 36
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Bind tools</strong></summary>
*
* ```typescript
* import { z } from 'zod';
* import { AIMessage } from '@langchain/core/messages';
*
* const GetWeather = {
* name: "GetWeather",
* description: "Get the current weather in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const GetPopulation = {
* name: "GetPopulation",
* description: "Get the current population in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
* const aiMsg: AIMessage = await llmWithTools.invoke(
* "Which city is hotter today and which is bigger: LA or NY?"
* );
* console.log(aiMsg.tool_calls);
* ```
*
* ```txt
* [
* {
* name: 'GetWeather',
* args: { location: 'Los Angeles, CA' },
* id: 'toolu_bdrk_01R2daqwHR931r4baVNzbe38',
* type: 'tool_call'
* },
* {
* name: 'GetWeather',
* args: { location: 'New York, NY' },
* id: 'toolu_bdrk_01WDadwNc7PGqVZvCN7Dr7eD',
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'Los Angeles, CA' },
* id: 'toolu_bdrk_014b8zLkpAgpxrPfewKinJFc',
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'New York, NY' },
* id: 'toolu_bdrk_01Tt8K2MUP15kNuMDFCLEFKN',
* type: 'tool_call'
* }
* ]
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Structured Output</strong></summary>
*
* ```typescript
* const Joke = z.object({
* setup: z.string().describe("The setup of the joke"),
* punchline: z.string().describe("The punchline to the joke"),
* rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
* }).describe('Joke to tell user.');
*
* const structuredLlm = llm.withStructuredOutput(Joke);
* const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
* console.log(jokeResult);
* ```
*
* ```txt
* {
* setup: "Why don't cats play poker in the jungle?",
* punchline: 'Too many cheetahs!'
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Response Metadata</strong></summary>
*
* ```typescript
* const aiMsgForResponseMetadata = await llm.invoke(input);
* console.log(aiMsgForResponseMetadata.response_metadata);
* ```
*
* ```txt
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": "end_turn",
* "stop_sequence": null,
* "usage": {
* "input_tokens": 25,
* "output_tokens": 19
* }
* }
* ```
* </details>
*/
class BedrockChat extends chat_models_1.BaseChatModel {
get lc_aliases() {
return {
model: "model_id",
region: "region_name",
};
}
get lc_secrets() {
return {
"credentials.accessKeyId": "AWS_ACCESS_KEY_ID",
"credentials.secretAccessKey": "AWS_SECRET_ACCESS_KEY",
"credentials.sessionToken": "AWS_SECRET_ACCESS_KEY",
awsAccessKeyId: "AWS_ACCESS_KEY_ID",
awsSecretAccessKey: "AWS_SECRET_ACCESS_KEY",
awsSessionToken: "AWS_SESSION_TOKEN",
};
}
get lc_attributes() {
return { region: this.region };
}
_identifyingParams() {
return {
model: this.model,
};
}
_llmType() {
return "bedrock";
}
static lc_name() {
return "BedrockChat";
}
constructor(fields) {
const awsAccessKeyId = fields?.awsAccessKeyId ?? (0, env_1.getEnvironmentVariable)("AWS_ACCESS_KEY_ID");
const awsSecretAccessKey = fields?.awsSecretAccessKey ??
(0, env_1.getEnvironmentVariable)("AWS_SECRET_ACCESS_KEY");
const awsSessionToken = fields?.awsSessionToken ?? (0, env_1.getEnvironmentVariable)("AWS_SESSION_TOKEN");
let credentials = fields?.credentials;
if (credentials === undefined) {
if (awsAccessKeyId === undefined || awsSecretAccessKey === undefined) {
throw new Error("Please set your AWS credentials in the 'credentials' field or set env vars AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, and optionally AWS_SESSION_TOKEN.");
}
credentials = {
accessKeyId: awsAccessKeyId,
secretAccessKey: awsSecretAccessKey,
sessionToken: awsSessionToken,
};
}
// eslint-disable-next-line no-param-reassign
fields = { ...fields, awsAccessKeyId, awsSecretAccessKey, awsSessionToken };
super(fields);
Object.defineProperty(this, "model", {
enumerable: true,
configurable: true,
writable: true,
value: "amazon.titan-tg1-large"
});
Object.defineProperty(this, "modelProvider", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "region", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "credentials", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "temperature", {
enumerable: true,
configurable: true,
writable: true,
value: undefined
});
Object.defineProperty(this, "maxTokens", {
enumerable: true,
configurable: true,
writable: true,
value: undefined
});
Object.defineProperty(this, "fetchFn", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "endpointHost", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
/** @deprecated Use as a call option using .bind() instead. */
Object.defineProperty(this, "stopSequences", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "modelKwargs", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "codec", {
enumerable: true,
configurable: true,
writable: true,
value: new eventstream_codec_1.EventStreamCodec(util_utf8_1.toUtf8, util_utf8_1.fromUtf8)
});
Object.defineProperty(this, "streaming", {
enumerable: true,
configurable: true,
writable: true,
value: false
});
Object.defineProperty(this, "usesMessagesApi", {
enumerable: true,
configurable: true,
writable: true,
value: false
});
Object.defineProperty(this, "lc_serializable", {
enumerable: true,
configurable: true,
writable: true,
value: true
});
Object.defineProperty(this, "trace", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "guardrailIdentifier", {
enumerable: true,
configurable: true,
writable: true,
value: ""
});
Object.defineProperty(this, "guardrailVersion", {
enumerable: true,
configurable: true,
writable: true,
value: ""
});
Object.defineProperty(this, "guardrailConfig", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.model = fields?.model ?? this.model;
this.modelProvider = getModelProvider(this.model);
if (!ALLOWED_MODEL_PROVIDERS.includes(this.modelProvider)) {
throw new Error(`Unknown model provider: '${this.modelProvider}', only these are supported: ${ALLOWED_MODEL_PROVIDERS}`);
}
const region = fields?.region ?? (0, env_1.getEnvironmentVariable)("AWS_DEFAULT_REGION");
if (!region) {
throw new Error("Please set the AWS_DEFAULT_REGION environment variable or pass it to the constructor as the region field.");
}
this.region = region;
this.credentials = credentials;
this.temperature = fields?.temperature ?? this.temperature;
this.maxTokens = fields?.maxTokens ?? this.maxTokens;
this.fetchFn = fields?.fetchFn ?? fetch.bind(globalThis);
this.endpointHost = fields?.endpointHost ?? fields?.endpointUrl;
this.stopSequences = fields?.stopSequences;
this.modelKwargs = fields?.modelKwargs;
this.streaming = fields?.streaming ?? this.streaming;
this.usesMessagesApi = canUseMessagesApi(this.model);
this.trace = fields?.trace ?? this.trace;
this.guardrailVersion = fields?.guardrailVersion ?? this.guardrailVersion;
this.guardrailIdentifier =
fields?.guardrailIdentifier ?? this.guardrailIdentifier;
this.guardrailConfig = fields?.guardrailConfig;
}
invocationParams(options) {
if (options?.tool_choice) {
throw new Error("'tool_choice' call option is not supported by BedrockChat.");
}
return {
tools: options?.tools ? formatTools(options.tools) : undefined,
temperature: this.temperature,
max_tokens: this.maxTokens,
stop: options?.stop ?? this.stopSequences,
modelKwargs: this.modelKwargs,
guardrailConfig: this.guardrailConfig,
};
}
getLsParams(options) {
const params = this.invocationParams(options);
return {
ls_provider: "bedrock",
ls_model_name: this.model,
ls_model_type: "chat",
ls_temperature: params.temperature ?? undefined,
ls_max_tokens: params.max_tokens ?? undefined,
ls_stop: options.stop,
};
}
async _generate(messages, options, runManager) {
if (this.streaming) {
const stream = this._streamResponseChunks(messages, options, runManager);
let finalResult;
for await (const chunk of stream) {
if (finalResult === undefined) {
finalResult = chunk;
}
else {
finalResult = finalResult.concat(chunk);
}
}
if (finalResult === undefined) {
throw new Error("Could not parse final output from Bedrock streaming call.");
}
return {
generations: [finalResult],
llmOutput: finalResult.generationInfo,
};
}
return this._generateNonStreaming(messages, options, runManager);
}
async _generateNonStreaming(messages, options, _runManager) {
const service = "bedrock-runtime";
const endpointHost = this.endpointHost ?? `${service}.${this.region}.amazonaws.com`;
const provider = this.modelProvider;
const response = await this._signedFetch(messages, options, {
bedrockMethod: "invoke",
endpointHost,
provider,
});
const json = await response.json();
if (!response.ok) {
throw new Error(`Error ${response.status}: ${json.message ?? JSON.stringify(json)}`);
}
if (this.usesMessagesApi) {
const outputGeneration = index_js_1.BedrockLLMInputOutputAdapter.prepareMessagesOutput(provider, json);
if (outputGeneration === undefined) {
throw new Error("Failed to parse output generation.");
}
return {
generations: [outputGeneration],
llmOutput: outputGeneration.generationInfo,
};
}
else {
const text = index_js_1.BedrockLLMInputOutputAdapter.prepareOutput(provider, json);
return { generations: [{ text, message: new messages_1.AIMessage(text) }] };
}
}
async _signedFetch(messages, options, fields) {
const { bedrockMethod, endpointHost, provider } = fields;
const { max_tokens, temperature, stop, modelKwargs, guardrailConfig, tools, } = this.invocationParams(options);
const inputBody = this.usesMessagesApi
? index_js_1.BedrockLLMInputOutputAdapter.prepareMessagesInput(provider, messages, max_tokens, temperature, stop, modelKwargs, guardrailConfig, tools)
: index_js_1.BedrockLLMInputOutputAdapter.prepareInput(provider, convertMessagesToPromptAnthropic(messages), max_tokens, temperature, stop, modelKwargs, fields.bedrockMethod, guardrailConfig);
const url = new URL(`https://${endpointHost}/model/${this.model}/${bedrockMethod}`);
const request = new protocol_http_1.HttpRequest({
hostname: url.hostname,
path: url.pathname,
protocol: url.protocol,
method: "POST",
body: JSON.stringify(inputBody),
query: Object.fromEntries(url.searchParams.entries()),
headers: {
// host is required by AWS Signature V4: https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
host: url.host,
accept: "application/json",
"content-type": "application/json",
...(this.trace &&
this.guardrailIdentifier &&
this.guardrailVersion && {
"X-Amzn-Bedrock-Trace": this.trace,
"X-Amzn-Bedrock-GuardrailIdentifier": this.guardrailIdentifier,
"X-Amzn-Bedrock-GuardrailVersion": this.guardrailVersion,
}),
},
});
const signer = new signature_v4_1.SignatureV4({
credentials: this.credentials,
service: "bedrock",
region: this.region,
sha256: sha256_js_1.Sha256,
});
const signedRequest = await signer.sign(request);
// Send request to AWS using the low-level fetch API
const response = await this.caller.callWithOptions({ signal: options.signal }, async () => this.fetchFn(url, {
headers: signedRequest.headers,
body: signedRequest.body,
method: signedRequest.method,
}));
return response;
}
async *_streamResponseChunks(messages, options, runManager) {
const provider = this.modelProvider;
const service = "bedrock-runtime";
const endpointHost = this.endpointHost ?? `${service}.${this.region}.amazonaws.com`;
const bedrockMethod = provider === "anthropic" ||
provider === "cohere" ||
provider === "meta" ||
provider === "mistral"
? "invoke-with-response-stream"
: "invoke";
const response = await this._signedFetch(messages, options, {
bedrockMethod,
endpointHost,
provider,
});
if (response.status < 200 || response.status >= 300) {
throw Error(`Failed to access underlying url '${endpointHost}': got ${response.status} ${response.statusText}: ${await response.text()}`);
}
if (provider === "anthropic" ||
provider === "cohere" ||
provider === "meta" ||
provider === "mistral") {
const toolsInParams = (0, anthropic_js_1._toolsInParams)(options);
const reader = response.body?.getReader();
const decoder = new TextDecoder();
for await (const chunk of this._readChunks(reader)) {
const event = this.codec.decode(chunk);
if ((event.headers[":event-type"] !== undefined &&
event.headers[":event-type"].value !== "chunk") ||
event.headers[":content-type"].value !== "application/json") {
throw Error(`Failed to get event chunk: got ${chunk}`);
}
const body = JSON.parse(decoder.decode(event.body));
if (body.message) {
throw new Error(body.message);
}
if (body.bytes !== undefined) {
const chunkResult = JSON.parse(decoder.decode(Uint8Array.from(atob(body.bytes), (m) => m.codePointAt(0) ?? 0)));
if (this.usesMessagesApi) {
const chunk = index_js_1.BedrockLLMInputOutputAdapter.prepareMessagesOutput(provider, chunkResult, {
// Content should _ONLY_ be coerced if tools are not in params
// If they are, we need content to be of type MessageTypeComplex
// so the tools can be passed through.
coerceContentToString: !toolsInParams,
});
if (chunk === undefined) {
continue;
}
if (provider === "anthropic" &&
chunk.generationInfo?.usage !== undefined) {
// Avoid bad aggregation in chunks, rely on final Bedrock data
delete chunk.generationInfo.usage;
}
const finalMetrics = chunk.generationInfo?.["amazon-bedrock-invocationMetrics"];
if (finalMetrics != null &&
typeof finalMetrics === "object" &&
(0, messages_1.isAIMessage)(chunk.message)) {
chunk.message.usage_metadata = {
input_tokens: finalMetrics.inputTokenCount,
output_tokens: finalMetrics.outputTokenCount,
total_tokens: finalMetrics.inputTokenCount + finalMetrics.outputTokenCount,
};
}
if (isChatGenerationChunk(chunk)) {
yield chunk;
}
// eslint-disable-next-line no-void
void runManager?.handleLLMNewToken(chunk.text);
}
else {
const text = index_js_1.BedrockLLMInputOutputAdapter.prepareOutput(provider, chunkResult);
yield new outputs_1.ChatGenerationChunk({
text,
message: new messages_1.AIMessageChunk({ content: text }),
});
// eslint-disable-next-line no-void
void runManager?.handleLLMNewToken(text);
}
}
}
}
else {
const json = await response.json();
const text = index_js_1.BedrockLLMInputOutputAdapter.prepareOutput(provider, json);
yield new outputs_1.ChatGenerationChunk({
text,
message: new messages_1.AIMessageChunk({ content: text }),
});
// eslint-disable-next-line no-void
void runManager?.handleLLMNewToken(text);
}
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_readChunks(reader) {
function _concatChunks(a, b) {
const newBuffer = new Uint8Array(a.length + b.length);
newBuffer.set(a);
newBuffer.set(b, a.length);
return newBuffer;
}
function getMessageLength(buffer) {
if (buffer.byteLength < PRELUDE_TOTAL_LENGTH_BYTES)
return 0;
const view = new DataView(buffer.buffer, buffer.byteOffset, buffer.byteLength);
return view.getUint32(0, false);
}
return {
async *[Symbol.asyncIterator]() {
let readResult = await reader.read();
let buffer = new Uint8Array(0);
while (!readResult.done) {
const chunk = readResult.value;
buffer = _concatChunks(buffer, chunk);
let messageLength = getMessageLength(buffer);
while (buffer.byteLength >= PRELUDE_TOTAL_LENGTH_BYTES &&
buffer.byteLength >= messageLength) {
yield buffer.slice(0, messageLength);
buffer = buffer.slice(messageLength);
messageLength = getMessageLength(buffer);
}
readResult = await reader.read();
}
},
};
}
_combineLLMOutput() {
return {};
}
bindTools(tools, _kwargs) {
const provider = this.modelProvider;
if (provider !== "anthropic") {
throw new Error("Currently, tool calling through Bedrock is only supported for Anthropic models.");
}
return this.bind({
tools: formatTools(tools),
});
}
}
exports.BedrockChat = BedrockChat;
function isChatGenerationChunk(x) {
return (x !== undefined && typeof x.concat === "function");
}
function canUseMessagesApi(model) {
const modelProviderName = getModelProvider(model);
if (modelProviderName === "anthropic" &&
!model.includes("claude-v2") &&
!model.includes("claude-instant-v1")) {
return true;
}
if (modelProviderName === "cohere") {
if (model.includes("command-r-v1")) {
return true;
}
if (model.includes("command-r-plus-v1")) {
return true;
}
}
return false;
}
function isInferenceModel(modelId) {
const parts = modelId.split(".");
return AWS_REGIONS.some((region) => parts[0] === region);
}
function getModelProvider(modelId) {
const parts = modelId.split(".");
if (isInferenceModel(modelId)) {
return parts[1];
}
else {
return parts[0];
}
}
/**
* @deprecated Use `BedrockChat` instead.
*/
exports.ChatBedrock = BedrockChat;