agsamantha/node_modules/@langchain/community/dist/embeddings/tensorflow.cjs

111 lines
4.1 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
var desc = Object.getOwnPropertyDescriptor(m, k);
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
desc = { enumerable: true, get: function() { return m[k]; } };
}
Object.defineProperty(o, k2, desc);
}) : (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
o[k2] = m[k];
}));
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
Object.defineProperty(o, "default", { enumerable: true, value: v });
}) : function(o, v) {
o["default"] = v;
});
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
__setModuleDefault(result, mod);
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.TensorFlowEmbeddings = void 0;
const universal_sentence_encoder_1 = require("@tensorflow-models/universal-sentence-encoder");
const tf = __importStar(require("@tensorflow/tfjs-core"));
const embeddings_1 = require("@langchain/core/embeddings");
/**
* Class that extends the Embeddings class and provides methods for
* generating embeddings using the Universal Sentence Encoder model from
* TensorFlow.js.
* @example
* ```typescript
* const embeddings = new TensorFlowEmbeddings();
* const store = new MemoryVectorStore(embeddings);
*
* const documents = [
* "A document",
* "Some other piece of text",
* "One more",
* "And another",
* ];
*
* await store.addDocuments(
* documents.map((pageContent) => new Document({ pageContent }))
* );
* ```
*/
class TensorFlowEmbeddings extends embeddings_1.Embeddings {
constructor(fields) {
super(fields ?? {});
Object.defineProperty(this, "_cached", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
try {
tf.backend();
}
catch (e) {
throw new Error("No TensorFlow backend found, see instructions at ...");
}
}
/**
* Private method that loads the Universal Sentence Encoder model if it
* hasn't been loaded already. It returns a promise that resolves to the
* loaded model.
* @returns Promise that resolves to the loaded Universal Sentence Encoder model.
*/
async load() {
if (this._cached === undefined) {
this._cached = (0, universal_sentence_encoder_1.load)();
}
return this._cached;
}
_embed(texts) {
return this.caller.call(async () => {
const model = await this.load();
return model.embed(texts);
});
}
/**
* Method that takes a document as input and returns a promise that
* resolves to an embedding for the document. It calls the _embed method
* with the document as the input and processes the result to return a
* single embedding.
* @param document Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the input document.
*/
embedQuery(document) {
return this._embed([document])
.then((embeddings) => embeddings.array())
.then((embeddings) => embeddings[0]);
}
/**
* Method that takes an array of documents as input and returns a promise
* that resolves to a 2D array of embeddings for each document. It calls
* the _embed method with the documents as the input and processes the
* result to return the embeddings.
* @param documents Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each input document.
*/
embedDocuments(documents) {
return this._embed(documents).then((embeddings) => embeddings.array());
}
}
exports.TensorFlowEmbeddings = TensorFlowEmbeddings;