agsamantha/node_modules/@langchain/community/dist/embeddings/togetherai.js

140 lines
5.3 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { getEnvironmentVariable } from "@langchain/core/utils/env";
import { Embeddings } from "@langchain/core/embeddings";
import { chunkArray } from "@langchain/core/utils/chunk_array";
/**
* Class for generating embeddings using the TogetherAI API. Extends the
* Embeddings class and implements TogetherAIEmbeddingsParams.
* @example
* ```typescript
* const embeddings = new TogetherAIEmbeddings({
* apiKey: process.env.TOGETHER_AI_API_KEY, // Default value
* model: "togethercomputer/m2-bert-80M-8k-retrieval", // Default value
* });
* const res = await embeddings.embedQuery(
* "What would be a good company name a company that makes colorful socks?"
* );
* ```
*/
export class TogetherAIEmbeddings extends Embeddings {
constructor(fields) {
super(fields ?? {});
Object.defineProperty(this, "modelName", {
enumerable: true,
configurable: true,
writable: true,
value: "togethercomputer/m2-bert-80M-8k-retrieval"
});
Object.defineProperty(this, "model", {
enumerable: true,
configurable: true,
writable: true,
value: "togethercomputer/m2-bert-80M-8k-retrieval"
});
Object.defineProperty(this, "apiKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "batchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 512
});
Object.defineProperty(this, "stripNewLines", {
enumerable: true,
configurable: true,
writable: true,
value: false
});
Object.defineProperty(this, "timeout", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "embeddingsAPIUrl", {
enumerable: true,
configurable: true,
writable: true,
value: "https://api.together.xyz/api/v1/embeddings"
});
const apiKey = fields?.apiKey ?? getEnvironmentVariable("TOGETHER_AI_API_KEY");
if (!apiKey) {
throw new Error("TOGETHER_AI_API_KEY not found.");
}
this.apiKey = apiKey;
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.timeout = fields?.timeout;
this.batchSize = fields?.batchSize ?? this.batchSize;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
}
constructHeaders() {
return {
accept: "application/json",
"content-type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
};
}
constructBody(input) {
const body = {
model: this?.model,
input,
};
return body;
}
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the TogetherAI API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
async embedDocuments(texts) {
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
let batchResponses = [];
for await (const batch of batches) {
const batchRequests = batch.map((item) => this.embeddingWithRetry(item));
const response = await Promise.all(batchRequests);
batchResponses = batchResponses.concat(response);
}
const embeddings = batchResponses.map((response) => response.data[0].embedding);
return embeddings;
}
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param {string} text Document to generate an embedding for.
* @returns {Promise<number[]>} Promise that resolves to an embedding for the document.
*/
async embedQuery(text) {
const { data } = await this.embeddingWithRetry(this.stripNewLines ? text.replace(/\n/g, " ") : text);
return data[0].embedding;
}
/**
* Private method to make a request to the TogetherAI API to generate
* embeddings. Handles the retry logic and returns the response from the
* API.
* @param {string} input The input text to embed.
* @returns Promise that resolves to the response from the API.
* @TODO Figure out return type and statically type it.
*/
async embeddingWithRetry(input) {
const body = JSON.stringify(this.constructBody(input));
const headers = this.constructHeaders();
return this.caller.call(async () => {
const fetchResponse = await fetch(this.embeddingsAPIUrl, {
method: "POST",
headers,
body,
});
if (fetchResponse.status === 200) {
return fetchResponse.json();
}
throw new Error(`Error getting prompt completion from Together AI. ${JSON.stringify(await fetchResponse.json(), null, 2)}`);
});
}
}