agsamantha/node_modules/@langchain/community/dist/llms/ollama.d.ts

120 lines
4.2 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import type { BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { GenerationChunk } from "@langchain/core/outputs";
import type { StringWithAutocomplete } from "@langchain/core/utils/types";
import { LLM, type BaseLLMParams } from "@langchain/core/language_models/llms";
import { OllamaInput } from "../utils/ollama.js";
export { type OllamaInput };
export interface OllamaCallOptions extends BaseLanguageModelCallOptions {
images?: string[];
}
/**
* @deprecated Ollama LLM has moved to the `@langchain/ollama` package. Please install it using `npm install @langchain/ollama` and import it from there.
*
* Class that represents the Ollama language model. It extends the base
* LLM class and implements the OllamaInput interface.
* @example
* ```typescript
* const ollama = new Ollama({
* baseUrl: "http://api.example.com",
* model: "llama2",
* });
*
* // Streaming translation from English to German
* const stream = await ollama.stream(
* `Translate "I love programming" into German.`
* );
*
* const chunks = [];
* for await (const chunk of stream) {
* chunks.push(chunk);
* }
*
* console.log(chunks.join(""));
* ```
*/
export declare class Ollama extends LLM<OllamaCallOptions> implements OllamaInput {
static lc_name(): string;
lc_serializable: boolean;
model: string;
baseUrl: string;
keepAlive: string;
embeddingOnly?: boolean;
f16KV?: boolean;
frequencyPenalty?: number;
headers?: Record<string, string>;
logitsAll?: boolean;
lowVram?: boolean;
mainGpu?: number;
mirostat?: number;
mirostatEta?: number;
mirostatTau?: number;
numBatch?: number;
numCtx?: number;
numGpu?: number;
numGqa?: number;
numKeep?: number;
numPredict?: number;
numThread?: number;
penalizeNewline?: boolean;
presencePenalty?: number;
repeatLastN?: number;
repeatPenalty?: number;
ropeFrequencyBase?: number;
ropeFrequencyScale?: number;
temperature?: number;
stop?: string[];
tfsZ?: number;
topK?: number;
topP?: number;
typicalP?: number;
useMLock?: boolean;
useMMap?: boolean;
vocabOnly?: boolean;
format?: StringWithAutocomplete<"json">;
constructor(fields: OllamaInput & BaseLLMParams);
_llmType(): string;
invocationParams(options?: this["ParsedCallOptions"]): {
model: string;
format: StringWithAutocomplete<"json"> | undefined;
keep_alive: string;
images: string[] | undefined;
options: {
embedding_only: boolean | undefined;
f16_kv: boolean | undefined;
frequency_penalty: number | undefined;
logits_all: boolean | undefined;
low_vram: boolean | undefined;
main_gpu: number | undefined;
mirostat: number | undefined;
mirostat_eta: number | undefined;
mirostat_tau: number | undefined;
num_batch: number | undefined;
num_ctx: number | undefined;
num_gpu: number | undefined;
num_gqa: number | undefined;
num_keep: number | undefined;
num_predict: number | undefined;
num_thread: number | undefined;
penalize_newline: boolean | undefined;
presence_penalty: number | undefined;
repeat_last_n: number | undefined;
repeat_penalty: number | undefined;
rope_frequency_base: number | undefined;
rope_frequency_scale: number | undefined;
temperature: number | undefined;
stop: string[] | undefined;
tfs_z: number | undefined;
top_k: number | undefined;
top_p: number | undefined;
typical_p: number | undefined;
use_mlock: boolean | undefined;
use_mmap: boolean | undefined;
vocab_only: boolean | undefined;
};
};
_streamResponseChunks(prompt: string, options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<GenerationChunk>;
/** @ignore */
_call(prompt: string, options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): Promise<string>;
}